

PCYACC OO TOOLKIT • Printed - December 11, 2000

Table of Contents

I. OVERVIEW 1

II. INTRODUCTION 3

1. FEATURES 3
2. CONVENTIONS 3
3. READING THIS MANUAL 3

III. OPERATING PROCEDURE 5

1. WRITING GRAMMAR DESCRIPTION FILES FOR PCYACC 5
2. GENERATING THE OBJECT-ORIENTED PARSERS 5
3. WRITING SCANNER DESCRIPTION FILES 7
4. GENERATING THE OBJECT-ORIENTED LEXERS 8
5. INTEGRATION OF ALL SOURCE FILES 9

IV. PCLEX 10

1. C CODE STRUCTURE GENERATED BY PCLEX 10
2. CODE GENERATED BY PCLEX IN C++ 11
3. STRUCTURE OF GENERATED C++ CODE 12
4. SYNOPSIS FOR ABXLEX CLASS 17
a. Description 17
b. Example 17
c. Public Constructor and Destructor 18
d. Public Member Functions 18

V. PCYACC 21

1. C++ CODE GENERATED WITH PCYACC C++ SKELETON 22
2. GENERATING C++ CODE BY USING PCYTOOL 26
3. SYNOPSIS FOR ABXYACC CLASS 26
a. Description 27

ii

PCYACC OO TOOLKIT • Printed - December 11, 2000

b. Example 27
c. Public Constructor and Destructor 29
d. Public Member Functions 30

VI. SYMBOL TABLE 31

1. INTRODUCTION 31
2. SYNOPSIS FOR ABXSYMBOLTABLE CLASS 32
a. Description 32
b. Symbol Table Entry Definition 34
c. Private Class Member 34
d. Public Constructor and Destructor 35
e. Public Member Functions 35

VII. ERROR HANDLER 38

1. INTRODUCTION 38
a. Error Reporting 38
b. Error Recovery 39
2. FUNCTIONS FOR ERROR REPORTING 39
3. FUNCTIONS FOR ERROR RECOVERY 40
4. SYNOPSIS FOR ABXERROR CLASS 41
a. Description 42
b. ABXError Class Definition 42
c. Public Constructor and Destructor 43
d. Public Member Functions 43

VIII. PARSE TREE NODE 45

1. ANALYZE PARSE TREE NODE CLASS ABXPARSETREENODE 45
2. STRUCTURE FOR ABXPARSETREENODE CLASS 47
3. STRUCTURE FOR ABXLEAF CLASS 48
4. EXPRESSION CLASSES ABXEXPRNODE 49
5. STRUCTURE FOR PARSE TREE CLASS ABXPARSETREE 51

IX. JAVA PARSER AND LEXER 53

iii

PCYACC OO TOOLKIT • Printed - December 11, 2000

1. INTRODUCTION 53
2. JAVA CLASS LIBRARY 56
a. JavaLex Class 56
b. JavaYacc Class 59
c. JavaError Class 61
d. JavaParseTree Class 63
(i). JavaParseTreeNode Class 63
(ii). JavaLeaf Class 64
(iii). JavaLeafList Class 64
(iv). JavaExprNode Class 65
(v). JavaExprNodeList Class 66
(vi). JavaParseTree Class 66
e. JavaSymbolTable Class 67
3. EXAMPLE 71

X. DELPHI PARSER AND LEXER 77

1. INTRODUCTION 77
2. DELPHI UNIT LIBRARY 79
a. DelphiLex Unit 79
b. DelphiYacc Unit 84
3. EXAMPLE 86

XI. VBSCRIPT PARSER AND LEXER 90

1. INTRODUCTION 90
2. STRUCTURE OF VBSCRIPT PARSER AND LEXER 92
a. VBScript Lex Modules 94
b. VBScript Yacc Modules 96
c. VBScript Error Report Modules 96
3. EXAMPLE 97

XII. PASCAL PARSER AND LEXER 113

1. INTRODUCTION 113
2. PASCAL LIBRARY 114
a. Pascal Lexer 114

iv

PCYACC OO TOOLKIT • Printed - December 11, 2000

b. Pascal Parser 118

XIII. BASIC PARSER AND LEXER 120

1. INTRODUCTION 120
2. STRUCTURE OF VBASIC PARSER AND LEXER 123
a. VBasic Lex Modules 124
b. VBasic Yacc Modules 126
c. VBasic Error Report Modules 126

XIV DESIGN REQUIREMENT FOR YACC 128

1. OBJECTIVE 128
2. SCOPE 128
3. COMMAND LINE OPTIONS 128

XV DESIGN REQUIREMENT FOR LEX 132

1. OBJECTIVE 132
2. SCOPE 132
3. COMMAND LINE OPTIONS 132

APPENDIX I. HOW TO CREATE C PARSER AND
LEXER 136

1. COMMAND LINE FORMAT FOR PCYACC 136
2. COMMAND LINE OPTIONS FOR PCYACC 136
3. COMMAND LINE FORMAT FOR PCLEX 138
4. COMMAND LINE OPTIONS FOR PCLEX 138
5. DEFAULT SKELETON FILE 139

APPENDIX II. HOW TO CREATE C++ PARSER
AND LEXER 140

1. COMMAND LINE FORMAT FOR PCYTOOL 140
2. COMMAND LINE OPTIONS FOR PCYTOOL 140

v

PCYACC OO TOOLKIT • Printed - December 11, 2000

3. COMMAND LINE FORMAT FOR PCLTOOL 140
4. COMMAND LINE OPTIONS FOR PCLTOOL 141
5. DEFAULT SKELETON FILE 141

APPENDIX III. HOW TO CREATE JAVA PARSER
AND LEXER 142

1. COMMAND LINE FORMAT FOR PCYTOOL 142
2. COMMAND LINE OPTIONS FOR PCYTOOL 142
3. COMMAND LINE FORMAT FOR PCLTOOL 142
4. COMMAND LINE OPTIONS FOR PCLTOOL 143
5. DEFAULT SKELETON FILE 143

APPENDIX IV. HOW TO CREATE DELPHI
PARSER AND LEXER 144

1. COMMAND LINE FORMAT FOR PCYTOOL 144
2. COMMAND LINE OPTIONS FOR PCYTOOL 144
3. COMMAND LINE FORMAT FOR PCLTOOL 144
4. COMMAND LINE OPTIONS FOR PCLTOOL 145
5. DEFAULT SKELETON FILE 145

APPENDIX V. HOW TO CREATE PASCAL
PARSER AND LEXER 146

1. COMMAND LINE FORMAT FOR PCYTOOL 146
2. COMMAND LINE OPTIONS FOR PCYTOOL 146
3. COMMAND LINE FORMAT FOR PCLTOOL 146
4. COMMAND LINE OPTIONS FOR PCLTOOL 147
5. DEFAULT SKELETON FILE 147

APPENDIX VI. HOW TO CREATE VISUAL BASIC
SCRIPT PARSER AND LEXER 148

1. COMMAND LINE FORMAT FOR PCYTOOL 148
2. COMMAND LINE OPTIONS FOR PCYTOOL 148

vi

PCYACC OO TOOLKIT • Printed - December 11, 2000

3. COMMAND LINE FORMAT FOR PCLTOOL 148
4. COMMAND LINE OPTIONS FOR PCLTOOL 149
5. DEFAULT SKELETON FILE 149

APPENDIX VII. HOW TO CREATE BASIC PARSER
AND LEXER 150

1. COMMAND LINE FORMAT FOR PCYTOOL 150
2. COMMAND LINE OPTIONS FOR PCYTOOL 150
3. COMMAND LINE FORMAT FOR PCLTOOL 150
4. COMMAND LINE OPTIONS FOR PCLTOOL 151
5. DEFAULT SKELETON FILE 151

APPENDIX VIII. ERROR MESSAGES FOR
PCYTOOL 152

ERROR CODE: ERROR MESSAGE AND EXPLANATION 152

APPENDIX IX. ERROR MESSAGES FOR
PCLTOOL 154

ERROR CODE: ERROR MESSAGE AND EXPLANATION 154

APPENDIX X. BIBLIOGRAPHY 156

PCYACC OO TOOLKIT • Printed - December 11, 2000

I. OVERVIEW

PCLEX and PCYACC are widely used software tools for developing
compilers. Currently, almost all PCYACC generate output codes in C. It
misses the well known advantages of object oriented programming, e.g., data
abstraction, encapsulation and inheritance. PCYACC OBJECT ORIENTED
TOOLKIT Library offers an object-oriented version of lexical analyzers,
syntax parsers, and error handling facilities. In the construction of compilers,
symbol table management is a commonly used technique. In this library,
parse tree and symbol table classes are also provided as the tools of compiler
construction. PCYACC OO TOOLKIT Library provides five basic classes:

1). Lexical Analyzer Class: This class serves as a code skeleton for PCLEX.

2). Syntax Parser Class: This class supports syntactic parser PCYACC.

3). Symbol Table Class: This class is used for symbol table management.

4). Error Handling Class: This class is responsible for error reporting.

5). Parse Tree Class: This class is available when user wants to construct
parse trees.

2

PCYACC OO TOOLKIT • Printed - December 11, 2000

PCYACC OO TOOLKIT Library takes advantage of data abstraction,
encapsulation and inheritance in object oriented software design. The
structure of our PCYACC OO TOOLKIT Library is shown below:

class
ABXSymbolTable

class
ABXYacc

class
ABXError

yyLex()

source file

functions give the
information about
the position when
error occurs

functions reporting the
stack status, recovering
from error

Figure 1-1. Structure of PCYACC OO TOOLKIT

class
ABXParseTree

class
ABXLex

More detailed explanation about our PCYACC OO TOOLKIT Library will be
provided from section IV through section VIII from both theoretical and
practical points of view.

3

PCYACC OO TOOLKIT • Printed - December 11, 2000

II. INTRODUCTION

1. Features

PCLEX and PCYACC have proven to be very efficient and elegant tools for
constructing compilers and interpreters for decades. At the time it was born,
C was the only target language. With the emergence of object oriented
programming languages, especially C++, the programming world quickly
switched gears to take advantage of the new programming method. To
incorporate C++ features into lexical analyzers and syntactic parsers, C++
classes can be inserted into user defined part in the processing. The resulting
lexical analyzers and syntactic parsers are in C++ and they take the
advantages of the object oriented programming features. Here we provide a
package called PCYACC OO TOOLKIT Library which provides five
classes,

 • ABXLex (a class for lexical analyzer)

 • ABXYacc (a class for syntactic parser)

 • ABXSymbolTable (a class for symbol table management)

 • ABXError (a class for error reporting and error recovery)

 • ABXParseTree (a class for parse tree)

However, due to the specialty of PCYACC and PCLEX, the classes that will
be utilized by the users in their C++ code are generated from a special form of
source files, scanner description files and grammar description files. It will be
impossible to define a general class for all the objects in the same category as
other class libraries usually do. We will see the reasons in detail later.

2. Conventions

All Abraxas Software class names start with the letters ”ABX”. All function
names start with a lower case letter, followed by uppercase letters and
underscores. For example, YACC class is named as ABXYacc and parser
function is yyParse(). To make it easy to remember and to understand,
abbreviations are not used.

3. Reading This Manual

This manual is intended to serve as tutorial book for PCYACC Object
Oriented Toolkit Library. It describes all the classes and member functions
embedded in this library and how to use PCYTOOL and PCLTOOL utility

4

PCYACC OO TOOLKIT • Printed - December 11, 2000

programs to create parsers and lexers in different languages. The discussion
about different classes is generally more detailed than what is necessary for
actual use. The reason is that this manual will help the user get familiar
about not only the usage of PCYACC OO Toolkit Library itself but also
understanding its internal design for further upgrading later.

5

PCYACC OO TOOLKIT • Printed - December 11, 2000

III. OPERATING PROCEDURE

Abraxas Software provides the PCYACC and PCLEX tools to create C
parsers and lexers. With the appearance of C++ and object oriented
programming language it is a trend in the industry to upgrade products from
non-object oriented design to object oriented design. Thus taking advantage
of the fact that C++ programming language provides data encapsulation,
inheritance, etc. C++ PCYACC classes provided by Abraxas Software are
available for the user to create C++ lexers and parsers. The following
describes the operation of how to use our new PCYACC OO TOOLKIT
Library to create C++ version of lexer and parser in more detail.

1. Writing Grammar Description Files for PCYACC

If you only need a single parser in your main program there is no change in
the requirements for the grammar description file.

If you plan to generate multiple parsers and use them in the same main
program one grammar description file should be generated for each parser
you wish to have. The main function should not be included in any one of the
grammar description files. Instead, a separate .cpp file should be generated
for the main function. In order for lexers to support multiple parsers, it is
required that tokens defined in the grammar files should be different for
each parser. Otherwise redefinition of tokens will occur which makes it
impossible to support multiple parsers. Referencing external variables or
functions defined in a parser or lexer description file in any user function is
also discouraged.

2. Generating the Object-Oriented Parsers

There are two methods to create C++ parser:

 • Use class skeleton file with -p on the PCYACCcommand line.

 • Use utility program PCYTOOL to translate C parser into C++
parser with default class skeleton file.

In the first approach, simply make use of the -p command line option of
PCYACC (assuming DOS PCYACC) to include the skeleton C++ code
“pcy_sk.cpp”. Everything else is the same as the procedure for generating C
code. Users can insert their own skeleton class definition files in place of
"pcy_sk.cpp".

6

PCYACC OO TOOLKIT • Printed - December 11, 2000

The file translation is illustrated as follows, assuming the grammar
description filename is “myparser.y”,

pcy_sk.cpp

PCYACCmyparser.y

-p option

myparser.cpp

Figure 3-1. Generate C++ parser by using
PCYACC directly with -p option on

The default skeleton file provided is "pcy_sk.cpp". If you would like to use
your own class skeleton file, simply follow -p option with your own skeleton
filename. Everything else is the same as the usual procedure of using the
PCYACC tool.

The second approach provided by Abraxas Software is focused on
separation of the procedure for creating C++ parser. This can make it easy for
the user to understand how the utility program PCYTOOL works with C
parser. Also the new -k option can be used to create some other language
parsers like JAVA, Borland Delphi, Basic, Pascal, etc. For a detailed
description of -k options, check later sections. The default -k option is -k1 for
creating a C++ parser.

There are two separate procedures for creating a C++ parser. In the first
phase, based on the availability of grammar description file, simply invoke
PCYACC tool on the command line to create a C parser. Once the C parser is
generated by PCYACC a utility program named PCYTOOL is needed for
generating a C++ parser in the second phase. The PCYTOOL uses the
default class skeleton file “pcy_sk.cpp” that is actually the parser class
declaration file. The corresponding class header file name is “pcy_sk.hpp”.

7

PCYACC OO TOOLKIT • Printed - December 11, 2000

If the grammar description file is named “myparser.y”, the following diagram
shows how the second approach creates the C++ parser.

myparser.y

PCYACC

myparser.h myparser.c

PCYTOOL

pcy_sk.cpp

myparser.cpp

Figure 3-2. Diagram of C++ parser generated by
PCYTOOL

The second approach for creating a C++ parser looks inconvenient for the
user. However, separation of the procedure of generating a C parser and a
C++ parser makes it easier to understand the process of generating a C++
parser. It will also be convenient to implement other language parsers by
simply providing -k option that can tell PCYTOOL in which language the
parser will be generated.

3. Writing Scanner Description Files

If you only need a single lexer in your main program there is no change in the
requirements for the scanner description file. Include the corresponding
header file (e.g., y1.h) for the tokens expected by the supported parser (e.g.,
y1.y).

If you plan to generate multiple lexers and use them in the same main
program, one scanner description file should be created for each lexer you
wish to have. Each lexer file should include the corresponding token
definition header file for the supported parser. A lexer can support only one
set of tokens. No lexer externals should be referenced in user's main function.

8

PCYACC OO TOOLKIT • Printed - December 11, 2000

4. Generating the Object-Oriented Lexers

There are two methods for creating a C++ lexer:

 • Use a class skeleton file with -p on in the PCLEX command line.

 • Use the utility program PCLTOOL to translate a C lexer into a C++
lexer with a default class skeleton file.

In the first approach simply make use of the -p command line option of the
PCLEX (assuming DOS PCLEX) to include the skeleton C++ code
“pcl_sk.cpp”. Everything else is the same as when generating C code.

The file translation is illustrated below, assuming the scanner description
filename is “mylexer.l”,

 pcl_sk.cpp

 mylexer.l

 -p option

mylexer.cpp

Figure 3-3. Generate C++ lexer by using
 directly with -p option on

 PCLEX

The default skeleton file provided is "pcl_sk.cpp". If you would like to use
your own class skeleton file simply follow -p option with your skeleton
filename. Everything else is the same as the usual procedure of using
PCLEX tool.

The second approach provided by Abraxas Software is focused on the
separation of the procedure for creating a C++ lexer. This can make it easy
for the user to understand how the utility program PCLTOOL works with
the C lexer. Also the new -k option can be used to create some other language
lexers like JAVA, Borland Delphi, Basic, Pascal, etc. For details about the -k
option, please check later sections. The default -k option is -k1 for creating a
C++ lexer.

There are two separate procedures to create a C++ lexer. In the first phase,
based on the availability of scanner description file, simply invoke the
PCLEX tool on the command line to create the C lexer. Once the C lexer is
generated by PCLEX, a utility program named PCLTOOL is needed for
generating a C++ lexer in the second phase. The PCLTOOL uses the default

9

PCYACC OO TOOLKIT • Printed - December 11, 2000

class skeleton file “pcl_sk.cpp” that is actually the lexer class declaration
file. The corresponding class header file name is “pcl_sk.hpp”.

If the scanner description file is named “mylexer.l”, the following diagram
shows how the second approach creates a C++ lexer.

mylexer.l

PCLEX

mylexer.c

PCLTOOL

pcl_sk.cpp

mylexer.cpp

Figure 3-4. Diagram of C++ lexer generated by PCLTOOL

The second approach creating a C++ lexer looks inconvenient for the user.
However, separation of the procedure of generating a C lexer and a C++ lexer
makes it easier to understand the process of generating C++ lexer. It will also
be convenient for you to implement other language lexers by simply providing
the -k option that can tell PCLTOOL which language the lexer will be
generated in.

5. Integration of All Source Files

All the source files generated in step 2 and step 4 plus the user's main
function file form the complete set of source code for generating a parser
application.

10

PCYACC OO TOOLKIT • Printed - December 11, 2000

IV. PCLEX

PCLEXTM is a program generator for writing lexical analyzers. A lexical
analyzer reads a stream of characters and separates the stream into symbols
of a target language, also known as tokens. PCLEX translates a lexical
analyzer (lex(.l) file) written in the Scanner Description Language (SDL)
into C language. SDL is a special high level language oriented toward string
matching. Scanner descriptions can be extended with code sections written in
C or C++ to accommodate the different needs of different languages. SDL
allows software developers to concentrate on what the scanner recognizes
instead of dragging in the details of how. It can reduce the work necessary to
bring a project to completion. Almost all the LEXes use C as the host
language. To explore the advantages of an object oriented programming
language like C++ we provide a lexical scanner class as a skeleton that can be
inserted to the output file by specifying the -p option on the PCLEX
command line. After running PCLEX on the SDL file (lex(.l) file) with the
option -p on, the generated code will be in C++.

1. C Code Structure Generated by PCLEX

The C code of a lexical analyzer generated by PCLEX has the following
layout,

1. Macro definitions

2. Code from section 1 of .l file

3. Data tables

4. Global variables

5. Auxilary functions

6. Function yylex()

7. Code from section 3 of .l file

Figure 4-1. Structure of Code Generated by PCLEX

1). Macro definitions: This part defines some macros that are actions of the
lexical analyzer. It defines symbolic names and gives users a chance to
redefine them to meet their special requirements.

2). Code segment copied directly from the declaration section of lexer file:
This part contains the macros defined by user, the declarations of variables,

11

PCYACC OO TOOLKIT • Printed - December 11, 2000

functions and types to be used in embedded actions. It varies with different
lexical analyzers and it is optional.

3). Data tables: This part consists of the data tables for driving the
Deterministic Finite Automaton (DFA) simulator. They are different for
different lexical analyzers.

4). Global variables: This part consists of a variable representing the input
stream buffer and pointers that indicate the status of input being scanned.
They should be almost the same for different lexical analyzers.

5). Auxiliary functions: This part defines the functions that are only called by
lexer function yylex().

6). Function yylex(): This part defines the function yylex().

7). Code segment copied directly from the function section of lexer file: This
part contains the possible function definitions by the user. It is also optional.

2. Code Generated by PCLEX in C++

There are two approaches for getting the C++ lexical analyzer. 1). Explore the
convenience of option -p of PCLEX, which creates a C++ version of lexical
analyzer skeleton by using pcl_sk.cpp skeleton file. 2). Modify the C lexer
generated by PCLEX to convert it to a C++ lexer.

The first approach is quick and its operation is more familiar to users. The
second approach allows new features to be added to PCLEX. For example, we
can create a utility program PCLTOOL that will convert the C lexer code
generated by PCLEX to be C++ lexer code by using default option -k1. And
lexers in other languages can be generated by supporting the -k option.

The ideal situation is to create a general class ABXLex that fits all lexical
analyzers. Just like all the sets of objects are instances of the same class
SET. However, there are major obstacles for us to reach the goal. A lexical
analyzer is a simulator of DFA, it depends on the data tables to drive its
transition. For each specific lexical analyzer, it has its own data tables. In
other words, data tables vary with the individual analyzers. These data
tables have the values determined after PCLEX scanned the lex(.l) file. They
are referenced by function yylex(), and they are always read-only. If we
have a general class for all lexical analyzers every instance of this class will
have the same copies of these tables. But each class instance should be
different because the initial values of these tables are decided after running
PCLEX. This is one reason why each lexical analyzer should have one class.
Another reason is the embedded user actions. The user actions also vary with

12

PCYACC OO TOOLKIT • Printed - December 11, 2000

different lexical analyzers. These two reasons make it almost impossible to
have a general class for all lexical analyzers.

Besides the data tables, the other important parts of a lexical analyzer are
the input buffer and the pointers indicating the scanning position. To
separate the input stream into tokens we need to give both the value
representing the token and the token itself. The value representing the token
will be returned by function yylex(). The token will be a variable of type
YYSTYPE.

3. Structure of Generated C++ Code

Like the C code generated by PCLEX, the C++ code also has a certain
structure. In the C code some functions and variables used as global variables
and functions will be moved into the class to become member variables and
functions in the C++ code. The C++ lexer has the structure listed below,
assuming that the class definition resides in file pcl_sk.hpp, which is the
default header file.

001: #include “pcl_sk.hpp”
002: Code from section 1 of .l file
003: Data tables
004: Definition of the lexical analyzer class’ public

member functions

Header file pcl_sk.hpp contains the definition of the default lexical analyzer
class ABXLex. All these data tables are read-only for the lexical analyzer.
This makes it possible to have all instances of that class share the same
copies of these large tables without each needing to have a copy.

13

PCYACC OO TOOLKIT • Printed - December 11, 2000

The structure of class ABXLex is shown below:

Data tables, variables for buffer,
pointers, state buffer, and some
status variables, they can be private
part for lex class. And function input()
and unput() are referred in function
yylex(). They can be defined as public
functions.

Constructor function

yyPeer()function yyLex()

Figure 4-2. Class Structure of Generated C++ Code

001: Private part:
002: Declare variables YYlval and YYval
003: Declare data tables
004: Declare YY_JAM and YY_JAM_BASE variables used

for lexer
005: Define macros in C lexer that will be used for

C++ lexer
006: Declare input streams
007: Declare buffer and buffer pointers
008: Declare a variable yyLineNo counting the line

number of input
009: Declare a variable yyText containing the content

of lexer matching pattern

YYlval and YYval variables are internal variables for ABXLex class. These
represent yylval and yyval variables in a C lexer respectively.

Data tables are declared as read-only arrays. These arrays are const for the
lifetime of particular ABXLex object, but not for the ABXLex class as a
whole.

YY_JAM and YY_JAM_BASE variables are private members of the
ABXLex class which are used by lexing function. These two variables are
defined as macros in a C lexer by PCLEX tool.

14

PCYACC OO TOOLKIT • Printed - December 11, 2000

Macros defined in a C lexer will be put into the ABXLex class as its private
data members. Putting C lexer macros into a class scope is due to the
characteristics of data encapsulation from the Object Oriented Programming
technique.

Four types of input streams are provided in ABXLex class. These are input
from stdin, file, character string or istream respectively.

The buffer is the memory segment where input stream stays for scanning. It
can only be accessed by the lexer function yyLex. The size of the buffer is
decided by a constant, which is defined by a macro. To change the size of the
buffer we just need to redefine the macro to a new constant. The pointer
indicates the position of the character that has been scanned most recently.

The line number yyLineNo is used to keep track of the actual input line
number the scanner has processed.

Variable yyText contains the content of the lexer matching pattern. The
corresponding variable in a C lexer is yytext.

001: Public part:
002: Declare constructor function
003: Declare destructor function
004: Declare function get_yyLineNo()
005: Declare function get_yyText()
006: Declare function get_yyBufferPtrC()
007: Declare function input()
008: Declare function unput()
009: Declare function set_YYSTYPEInstance()
010: Declare function yyCheck()
011: Declare function yyInit()
012: Declare function yyLex()
013: Declare function yyPeer()
014: Declare function yySetBuffer()
015: Declare function yySetInput()
016: Declare function yySearch()
017: Protected part:
018: Declare virtual function yyWrap()

Currently, we consider four types of input stream to the ABXLex objects.
Each type of input stream has its own corresponding constructor function. All
the private data members for ABXLex class are defined inside the
constructor.

The destructor function simply frees all the memory that is allocated in the
constructor.

15

PCYACC OO TOOLKIT • Printed - December 11, 2000

Function get_yyLineNo returns the current line number in the input
stream. This information is very useful especially when you want to report an
error message.

Function get_yyText returns the lex token buffer which contains the current
token processed by the lexer.

Function get_yyBufferPtrC returns the current token buffer index
processed by the lexer.

Function input fills the input buffer of the lexer which gets the next
character from input.

Function unput puts a character back in the logical input stream.

Function set_YYSTYPEInstance will set two instances of YYSTYPE that is
shared between ABXLex/ABXYacc instances.

Function yyCheck will output the content of the lexeme presently being
examined by the lexer. It maintains its own line number count and counts
line number, whenever a new line character ‘\n’ is encountered. It also
should have the ability to manage the output formatting.

Function yyInit resets the position of the buffer pointers and clears the
buffer. This function is useful when the lexer needs to switch the input from
one file to another.

Function yyLex is actually a lexer that will return a token to a parser
whenever it needs a token from the input stream.

Function yyPeer allows users to get the next n characters from the input
stream. The number of characters that will be fetched is specified by the first
parameter of this function. The fetched characters will be stored in a string
that is specified by the second parameter of the function.

Function yySetBuffer allows the user to reset the input buffer size
according to project requirement. The buffer size can be modified to shrink or
enlarge. This makes it convenient for the user to simply call the member
function to change it instead of doing it by “hand”.

Function yySetInput enables a lexer to switch input from one file to another
even in the middle of processing a file. To do this, users must take care of the
backup and restoration of the buffer and function. yySetInput will do this
work.

16

PCYACC OO TOOLKIT • Printed - December 11, 2000

Function yySearch is provided by the user. This will search the token list
based on the current token from the lexical analyzer.

Function yyWrap always returns 1. This indicates the program is done and
there is no more input.

We can also take the second approach to create a C++ lexer by using
PCLTOOL with the default k1 option on. However, you should create a C
lexer with PCLEX first. PCLTOOL will hook the C lexer and insert the
default C++ lexer skeleton into it. A C++ version lexer is generated in the
way described above. The following gives an example of the command line to
create a C++ lexer, however you have to make sure that the C++ lexer
skeleton files (pcl_sk.cpp and pcl_sk.hpp) are residing the current working
directory.

PCLTOOL –k1 yacc.h lex.l lex.c
Or
PCLTOOL –k1 lex.c

yacc.h is a yacc header file including tokens and YYSTYPE union definition.
lex.l is a scanner description file. lex.c is a lexical analyzer generated by
PCLEX.

As a result, users get the source code file lex.cpp. To declare any instance of
class ABXLex, you just need to include the default header file pcl_sk.hpp in
the source code to make the class defined.

The structure of this generated C++ code in file lex.cpp is listed as follows:

001: #include “pcl_sk.hpp”
002: Code copied from section 1 of file lex.l (if there is any)
003: YY_JAM and YY_JAM_BASE constants
004: Data tables
005: ABXLex::ABXLex(FILE *, FILE *) { }
006: ABXLex::ABXLex(istream *, FILE *) { }
007: ABXLex::ABXLex(char *, FILE *) { }
008: ABXLex::~ABXLex() { }
009: ABXLex::get_yyLineNo(void) { }
010: ABXLex::get_yyText(void) { }
011: ABXLex::input(void) { }
012: ABXLex::unput(int) { }
013: ABXLex::set_YYSTYPEInstance(YYSTYPE *, YYSTYPE *) { }
014: ABXLex::yyCheck(char *, int) { }
015: ABXLex::yyInit(void) { }
016: ABXLex::yyLex(void) { }
017: ABXLex::yyPeer(int, char *) { }
018: ABXLex::yySearch(char *) { }

17

PCYACC OO TOOLKIT • Printed - December 11, 2000

019: ABXLex::yySetBuffer(int) { }
020: ABXLex::yySetInput(FILE *, FILE *) { }
021: ABXLex::yyWrap(void) { }
022: Code copied from section 3 of file lex.l (if there is any)

The C++ header file pcl_sk.hpp contains the definition of the class ABXLex.

4. Synopsis for ABXLex Class

#include “pcl_sk.hpp”
ABXLex* mylex;

Assume that the lexical analyzer skeleton provided by Abraxas Software
declares the lexical analyzer class as ABXLex and the lexer file has the
name lex.l. PCLTOOL will generate a C++ file lex.cpp that contains the
definitions of member functions of the class ABXLex. And the header file
pcl_sk.hpp contains the definition of the class ABXLex.

a. Description

Although we have two approaches to generate a C++ lexer, the second one is
recommended by Abraxas Software. By using the second method users
have a choice to generate lexers in other languages.

The library has a class ABXLex that provides a C++ version skeleton of the
lexical analyzer. After scanning a C code lexer file successfully, PCLTOOL
generates a C++ file. This defines a lexical analyzer class. Besides the class
definition, the data tables will be declared as static arrays that can only be
accessed by the instance of lexical analyzer class.

b. Example

Assume that the SDL file that describes the lexer has the file name lex.l and
that you intend to name the lexical scanner class ABXLex. Then you just
need to use the default skeleton file pcl_sk.cpp. After the C lexer was
processed by PCLTOOL, file lex.cpp is generated. In this file the member
functions of class ABXLex are defined, such as yyLex(). The lexical analyzer
class can be used as follows:

001: #include “pcl_sk.hpp”
002: #include <stdlib.h>
003:
004: FILE *yyin;
005: main()
006: {
007: ABXLex* mylex = new ABXLex(yyin, stdout);

18

PCYACC OO TOOLKIT • Printed - December 11, 2000

008: mylex->yyLex();
009: }

c. Public Constructor and Destructor

ABXLex(FILE* inputFile, FILE *outputFile);
ABXLex(istream* inputStream, FILE* outputFile);
ABXLex(char* inputString, FILE* outputFile);

Initialize all ABXLex class data members. The first parameter for this
function is a file pointer to an input file, a pointer to istream, or a character
string. A file pointer to an output file is its second parameter.

~ABXLex();

This function frees the allocated memory used by ABXLex class data
members.

d. Public Member Functions

int get_yyLineNo(void);

This function returns the current line number that is very useful in error
reporting.

char* get_yyText(void);

This function returns the current token in the lex token buffer.

int get_BufferPtrC(void);

This function returns the current index of token buffer.

int input(void);

This function returns the next character from input.

void unput(int);

This function puts a character back in the logical input stream.

void set_YYSTYPEInstance(YYSTYPE *, YYSTYPE *);

This function will set two instances of YYSTYPE (yylval and yyval) shared
between ABXLex/ABXYacc instances.

void yyCheck(char *, int);

19

PCYACC OO TOOLKIT • Printed - December 11, 2000

This function examines the current lexeme token, and returns its content and
location information in input stream.

void yyInit(void);

Initialize the input buffer. Reset the input buffer pointer to indicate the
buffer is empty.

int yyLex(void);

Separate an input character stream into tokens following the patterns
specified in the lex(.l) file. This function varies for each different lexical
analyzer because the embedded user actions defined in the lex(.l) file are
different. This is the reason why we cannot have a general class for all the
lexical analyzers. This function only returns an integer that represents a
token. However, the user still needs to take care of the value of the token.
The value of a token is passed to the syntactic parser via variable yylval. The
type of this variable is YYSTYPE that is defined by a typedef or union
declaration at the beginning of a grammar file.

void yyPeer(int n, char *s);

Look ahead to the nth character from the current scanning position. The
number of characters to get from input stream is defined as the first
parameter of this function. The actual fetched characters are stored in a
string that is defined as the second parameter.

void yySetBuffer(int);

This function takes an integer representing the buffer size defined by the
user as input. The input buffer size is set based on this parameter.

void yySetInput(FILE *fp);

Allows the lexer to switch scanning from one input file to another. This
enables the scanner to be interrupted to process another input instead of the
current one.

int yySearch(char* str);

This function is provided by the user, which will return a token value
according to the input string. Since every lexer is associated with a different
set of tokens determined by the parser, we can not provide a general function
for the customer to get a current token value.

int yywrap(void);

20

PCYACC OO TOOLKIT • Printed - December 11, 2000

This function can be modified by the user. The default yyWrap() always
returns 1 which indicates the program is done and there is no more input.

21

PCYACC OO TOOLKIT • Printed - December 11, 2000

V. PCYACC

Similar to PCLEX, PCYACC accepts a grammar file as input and generates
a syntactic parser for a specific language. After processing the grammar file,
it generates a C file for the syntactic parser. The generated C file has the
layout as shown below.

1. Code copied from the first section of .y file

2. Macro definitions

3. Code copied from the third section of .y file

4. Data tables

6. Function: yyparse

Figure 5-1. Structure of the code generated by PCYACC

5. Macro definitions and data declarations

1). Code copied directly from the first section of yacc (.y) file: This part
declares the global variables to be used in user actions, includes the
necessary header files for the library functions to be used and defines the
macros.

2). The macro definitions for tokens: This part contains the list of all the
constants representing the terminal symbols declared in lines by using the
%token.

3). Code copied directly from the third section of yacc (.y) file: This part
contains user defined functions.

4). Data tables: This part consists of two parts, a parsing action function
action and a goto function goto. They are definitely different for each
individual syntactic parser.

5). Macro definitions and data declarations: This part contains macro
definitions and data declarations used by yyparse function.

6). Function yyparse(): This is the actual syntactic parser that will translate
a Grammar Description File into a C file. It works exactly the same way as a
translator or interpreter that can translate a special grammar language into
the C programming language source file.

22

PCYACC OO TOOLKIT • Printed - December 11, 2000

To generate C++ code for the syntactic parser there are two approaches:

 • Supply a C++ skeleton to PCYACC.

• Generate a C parser by PCYACC. Convert it into a C++ parser by
using PCYTOOL.

The first approach simply explores the advantage of the option -p of
PCYACC. By modifying the skeleton file, users can get syntactic parser
classes for their special purpose. The second approach needs to use a utility
program PCYTOOL, which will hook the C parser generated by PCYACC
with the skeleton file and translate a C parser into a C++ parser (assume
using -k1 default option on PCYTOOL command line). PCYTOOL will deal
with everything regarding this translation according to the -k option setting.

1. C++ Code Generated with PCYACC C++ Skeleton

PCYACC provides a command option -p that enables us to generate a parser
by using a user-provided skeleton. With this option, we can make PCYACC
generate a parser class. We provided such a skeleton file that contains the
definition of the member functions of the parser class and also the macro
definitions that will be used in those member functions. The standard
skeleton file name is pcy_sk.cpp. We also provide a corresponding header
file named pcy_sk.hpp that contains the definition of the parser class with
standard name ABXYacc.

23

PCYACC OO TOOLKIT • Printed - December 11, 2000

The layout of generated C++ code is shown as below.

#include "pcy_sk.hpp"

Code copied directly from section 1 of .y file (if there is any)

Code copied directly from section 3 of .y file (if there is any)

Macro definitions representing tokens

Data tables

PCYACC macros

Class ABXYacc

Figure 5-2 Layout of Generated C++ code

Because data tables are only read by the parser function they can be shared
by all instances of the syntactic parser class. So it is not necessary for each
instance to keep its own copy of these tables. This will make the class more
efficient.

The structure of the syntactic parser class:

001: Private part:
002: State stack
003: Value stack
004: Stack pointers
005: Middle storage
006: Parsing table
007: YACC constants
008: Public part:
009: Constructor function
010: Destructor function
011: Function yyParse()
012: Member functions

The constructor function of the parser class establishes the stacks, initializes
the pointers of the stacks. The constructor's name is decided by the class
name. The standard syntactic parser class name provided by the PCYTOOL
is ABXYacc. It is defined in the header file pcy_sk.hpp. An ABXLex class
instance will be passed to the ABXYacc constructor as its parameter, which
will provide tokens from the input stream for the ABXYacc class instance.
The class member functions are defined within the file pcy_sk.cpp that is
used as a PCYACC skeleton. If you want to have a syntactic parser class

24

PCYACC OO TOOLKIT • Printed - December 11, 2000

with a different name, you need to make a copy of the header file
pcy_sk.hpp. Then edit this header file, change the class name from
ABXYacc to the name you want and change the names of constructor and
destructor accordingly. You also need to make a copy of the skeleton file
pcy_sk.cpp and change the class name, constructor function and destructor
function’s names to make them consistent with the names in header file.

Traditionally, the state stack is designed to be interior to the parser function.
This is mainly because the state stack is not as significant as the value stack.
In case the parser spots an error, it may call some error handling mechanism.
To enable the error handler to peer and change the state stack, it is better to
make them accessible to error handler. For example, it will be very helpful to
report the current state of the stacks.

The destructor function does the reverse of the constructor function. It cleans
the stacks and destroys the memory allocated for the stacks.

One thing that needs to be considered is which lexical analyzer feeds the
stream of tokens to the syntactic parser. Traditionally, the parser function
yyparse() calls the lexer function yylex() directly whenever it needs a token
for future parsing. Then the lexer function will go to scan the input stream
and get the next token. Since the lexer function is called by the parser
function we may make the lexer function yylex() a global function so that
yyparse() could call yylex() directly. However, it will be difficult for a parser
to handle multiple lexers because we have to modify the parser function to
switch among several lexer functions. To make this easy, we set a pointer to
an integer function as a part of the class, and define a class method
yySetLexer to switch between lexers. The class declares a pointer to an
integer function that is called by yyParse. To set a lexical scanner using
function yySetLexer, we need to specify the parameter for this function as a
new lexer object reference for the parser.

The other side of interaction with a lexical analyzer is to transfer the value of
the scanned token, which is carried by variable yylval, with type YYSTYPE.
YYSTYPE is defined at the beginning of the GDL file. It is desirable that
each instance of the parser class has its own copy of yylval. As mentioned
before, variable yylval and yyval have to be shared between
ABXLex/ABXYacc class instances. Since the user is already familiar with
these two global variables we need to find a way to make these two variables
shared by lexer and parser objects. ABXLex and ABXYacc classes should
have correspondent data members that can be accessed by using member
functions. The detailed implementation is as follows:

Add two macro definitions in pcy_sk.hpp:

25

PCYACC OO TOOLKIT • Printed - December 11, 2000

#define yylval *YYlval
#define yyval *YYval

Declare two private data members for ABXYacc class:

YYSTYPE *YYlval;
YYSTYPE *YYval;

The same scheme is applied to ABXLex class. Define two macros and declare
two data members for ABXLex class in pcl_sk.hpp.

#define yylval *YYlval
#define yyval *YYval
YYSTYPE *YYlval;
YYSTYPE *YYval;

The ABXLex class needs a method called:

void ABXLex::set_YYSTYPEInstnace(YYSTYPE *yys, YYSTYPE
*yyss)
{

YYlval = yys;
YYval = yyss;

}

The ABXYacc constructors need to call:

 LexObject->set_YYSTYPEInstance(YYlval, YYval);

Thus, global variable yylval and yyval can be shared between
ABXLex/ABXYacc instances. If a lexical analyzer is chosen by a parser to
get the token from the input stream, ABXYacc class should include the
following component:

Public:
void yySetLexer(ABXLex *);

To get the corresponding lexer that the parser requested, the following steps
should be included in the place where the parser is invoked (assuming a
string buffer will provide token input):

ABXLex* mylex = new ABXLex(buf, stdout);
myyacc->yySetLexer(mylex);

In this way, a lexer function can be chosen for the parser explicitly. It is quite
convenient to have a parser to switch the lexer that it will get a token from.

26

PCYACC OO TOOLKIT • Printed - December 11, 2000

Function yyParse is the core part of the syntactic parser class. It is a LALR
parser for the designed language that is defined by the grammar rules in the
grammar description file (yacc(.y) file). It takes tokens provided by lexical
scanner as input. Its pattern is fixed. However, since the embedded user
actions regarding the specific grammar rules will be inserted into function
body, this means that for each lexical scanner class, function yyParse is
different from one of another lexical scanner class. This is one reason why we
could not provide a general class for all lexical scanners.

Function yyParse produced with the skeleton works in exactly the same way
as yyparse() function automatically generated by PCYACC, except that all
the data members used for the parser have been stored as a private part of
ABXYacc class. The only way to access these data members is to use
member functions of ABXYacc class or user supplied methods in ABXYacc
class.

2. Generating C++ Code by Using PCYTOOL

Above is stated the scenario of the syntactic parser class generated by
applying option -p on a skeleton file on PCYACC command line. We can also
take a second approach to make PCYTOOL generate C++ code. The parser
class definition file defaults to name “pcy_sk.hpp”. Its class member
function definition file name will be “pcy_sk.cpp”. The user can change these
file names or use their own parser class based on their needs. For more
detailed option settings in PCYTOOL command line, please check later
sections.

Since we have a very reliable C parser, it really makes sense to create a
utility program PCYTOOL to translate a C parser into a C++ parser. In this
way, parser global data tables and variables can be moved from global scope
into class scope. This makes it possible to support multiple parsers easily.

The procedure that PCYTOOL creates a C++ parser will be described in
detail in later sections.

3. Synopsis for ABXYacc Class

#include “pcy_sk.hpp”
ABXYacc* parser;

Assume that the grammar file has name myparser.y. After running
PCYACC on this file with the skeleton option -p on, we get a source code file
named myparser.cpp. The file myparser.cpp contains the data tables and
member functions of the syntactic parser class.

27

PCYACC OO TOOLKIT • Printed - December 11, 2000

a. Description

Unlike other classes, the syntactic parser class is generated by inserting a
skeleton file into PCYACC generated output file. The class is specific to a
language and actions the user intends to specify for the language. For
example, we are developing parsers for two different languages L1 and L2.
Suppose corresponding grammar files for them are l1.y and l2.y. After
applying PCYACC on these grammar files, we will get the declaration of two
different classes for each language. This is necessary because the classes
access different data tables and have different member functions even though
the data tables and the functions share the same names. The class definition
of parser class is in header file "pcy_sk.hpp". The class name is ABXYacc in
this file. And the skeleton is in the file pcy_sk.cpp. If you go along with the
name ABXYacc, what you need next is to run PCYACC with option -
ppcy_sk.cpp, and include header file "pcy_sk.hpp" in the source file where
class ABXYacc is referred. Sometimes, you would like to choose some other
names for the syntactic parser class. For example, your program may require
multiple parsers. To create a parser class with name different from
ABXYacc, what you need to do is to make a copy of the file pcy_sk.cpp with
a different file name, make a copy of the header file pcy_sk.hpp and rename
it as well. Modify the class name from ABXYacc to the one you will choose.
Change the included file from pcy_sk.hpp to the one copied from
pcy_sk.hpp. And you also need to change the class name in the header file
from ABXYacc to the same as the one in the skeleton file. Then run
PCYACC with option -p specified with the skeleton. At the place where you
want to use this class, you just need to include the header file to make
syntactic parser class declared.

b. Example

Suppose that we are writing a parser for a language. We have the grammar
file for this language named myparser.y. We run PCYACC on this grammar
file with option -p. As a result, we get a C++ output file myparser.cpp.
Assume that we declared the syntactic parser class with name ABXYacc in
the skeleton used. File myparser.cpp contains the definition of function
ABXYacc::yyParse() and the declaration of the data tables and the code
moved from section 1 and section 3 of file myparser.y if they do exist. What
we need to do is to declare an instance of the syntactic parser class to create a
parser. And the other thing we need to pay attention to is that we also need
to have a lexical analyzer that provides tokens for this parser. Suppose we
have already had such a lexical analyzer class ABXLex. (For details, please
see lexical analyzer class section.) To create a lexical analyzer, we just need
to declare an instance of class ABXLex. It is necessary to choose a lexer
function for the parser. The syntactic parser class provides such a method to
enable the parser to choose a lexer function. The call

28

PCYACC OO TOOLKIT • Printed - December 11, 2000

myyacc->yysetLexer(mylex);

makes object mylex the chosen lexer of parser object myyacc, assuming
myyacc and mylex are declared as ABXYacc and ABXLex object pointers
respectively. A lexical analyzer is built around an input file, which means
when you are creating a lexical analyzer, you need to specify an input stream
as the arguments of the constructor.

Once the class definition is in place, we can write a simple program as below:

001: #include <stdlib.h>
002: #include <string.h>
003: #include “pcy_sk.hpp” // header file for YACC class
004: #include “pcl_sk.hpp” // header file for LEX class
005:
006: int yylineno = 1;
007: int yyerrcnt; // count of errors
008: char yyerrsrc[80]; // input file name
009: FILE *yyin; // pointer to input file
010:
011: void main(int argc, char** argv)
012: {
013: yyin = fopen(argv[1], “r”);
014: if (yyin == NULL)
015: exit(1);
016: strcpy(yyerrsrc, argv[1]);
017:
018: ABXLex* mylex = new ABXLex(yyin, stdout);
019: ABXYacc* myyacc = new ABXYacc(mylex, stdout, stderr,

yyerrsrc);
020: myyacc->yySetLexer(mylex); // Set lexer
021: myyacc->yyParse(); // Activate parsing function
022:
023: yyerrcnt = myyacc->get_yyErrorCount();
024: fclose(yyin);
025: if (yyerrcnt != 0)
026: fprintf(stderr, “There are errors\n”);
027: else
028: fprintf(stdout, “No error.\n”);
029: exit(1);
030: }

In this example, only a single lexical analyzer is used. The scheme makes a
syntactic parser easier to take tokens from a lexical analyzer specified by the
yySetLexer function. All the data tables and global information generated
by a parser are hidden inside the parser object. In this way, each instance of
ABXYacc object will have its own data tables, macro definitions, etc.

29

PCYACC OO TOOLKIT • Printed - December 11, 2000

Since it is very important for PCYACC to be able to generate a parser that
can take tokens from multiple lexers, the following example demonstrates
how to write a parser that does this. Multiple lexical analyzer class
definitions have to be generated by PCLEX beforehand. The key function to
call is yySetLexer member function of a parser class. This takes a pointer to
a lexer object as its argument. To use a specific lexical analyzer to supply
token to the parser, make a function call to yySetLexer with a pointer to a
lexer object as argument. Note that lexical analyzer objects are dynamically
created by supplying an input file name as an argument. Each instance of the
lexical analyzer class is different because the data tables for a lexer object are
created according to the input description file.

Assume that we have all the required header files generated by PCYACC
and PCLEX that define the lexical analyzer and parser classes. The main
routine shown below illustrates how to switch between two different lexers in
a parser:

001: #include <stdlib.h>

002: #include “pcy_sk.hpp”
003: #include “pcl_sk.hpp”
004:
005: void main()
006: {
007: FILE *input1, *input2;
008:
009: input1=fopen(“input1”, “r”);
010: input2=fopen(“input2”, “r”);
011:
012: ABXLex* mylexer1 = new ABXLex(input1, stdout);
013: ABXLex* mylexer2 = new ABXLex(input2, stdout);
014: ABXYacc* myparser = new ABXYacc(mylexer1, stdout,

stderr, NULL);
015:
016: myparser->yyParse(); // Activate parsing function
017: myparser->yySetLexer(mylexer2); // Set another lexer
018: myparser->yyParse(); // Activate parsing function
019: }

c. Public Constructor and Destructor

Assume the class name is ABXYacc, the constructor will be

ABXYacc();

This constructor establishes the stacks with default stack depth defined by
ABXYacc class constant YYMAXDEPTH and initializes the pointers of the

30

PCYACC OO TOOLKIT • Printed - December 11, 2000

stacks. An ABXLex class instance will be passed to an ABXYacc constructor
as its parameter, which will provide tokens from input stream for an
ABXYacc class instance

The public destructor for this class will be:

~ABXYacc();

It will clear the stacks and free memory used by an ABXYacc class instance.

d. Public Member Functions

int get_yyErrorCount(void);

This function will return the count of errors for a parser that is generated by
yyParse ().

void yySetLexer(ABXLex *)

This function’s purpose is to allow a parser to choose a lexer function that
provides tokens. The lexer function is specified as a pointer to a lexer object.
The function will be called by the parser function.

int yyParse(void)

It is a LALR parser for the language defined by the grammar rules in the
grammar description file. It is called somewhere by other functions, like
main() function.

void yySetTokStack(int)

This function will modify the token stack size based on the input size
provided by the user. It is a very important feature so that the user can
modify the PCYACC buffer size to meet the project requirement.

31

PCYACC OO TOOLKIT • Printed - December 11, 2000

VI. SYMBOL TABLE

1. Introduction

In the practice of writing a compiler or an interpreter, it is almost inevitable
to manage symbol tables. There are several reasons to build a symbol table.
First, we can build a symbol table as a lexer is running so that symbols can
be entered in the lexical analysis phase and symbol properties can be entered
in later phases. Second, without consulting the lexer, symbol tables can be
checked to find out information about a symbol. Third, we can access a
permanent copy of information referring to an appropriate symbol table entry
even after lexer is ready to process the next token since each subsequent
token overwrites yytext. Symbol table keeps track of symbols encountered by
a compiler and services all phases of compiler. A general data structure is
required to build a symbol table that can be shared by both lexer and parser.

A symbol table is a collection of symbols. A symbol itself is represented by a
string of characters. In the construction of a compiler, there are some
essential elements associated with a symbol.

Typically, they are:

1). Symbol name: Each symbol is a character string itself, it has a specific
identification name to distinguish itself from others.

2). The attribute of a symbol: Basically, a symbol could be a variable name, a
function name or a type name, the attribute identifies what kind of symbol it
is.

3). The type of a symbol: This defines the specific domain associated with this
symbol.

4). The value of a symbol: Each symbol could have a value associated with it.
For example, a symbol could have an initial value before being modified in a
program.

5). The scope of a symbol: A symbol may have a lifetime in the program. This
scope identifies the symbol’s living range in the program.

Since symbol table is a very important facility in compiler construction, it has
been widely used to keep track of information in compiler or interpreter
design field, the following sections will cover the details about building
symbol table class.

32

PCYACC OO TOOLKIT • Printed - December 11, 2000

2. Synopsis for ABXSymbolTable Class

#include “abxsym.hpp”
ABXSymbolTable symtbl;

The file “abxsym.hpp” contains all the macro definitions and the definition
of ABXSymbolTable class. All the data declaration and class declaration
will be inside file abxsym.cpp. The implementation of member functions for
class ABXSymbolTable lives in the file abxsym.cpp as well.

a. Description

Class ABXSymbolTable provides the basic facilities of managing symbols in
compiler construction. Due to the strong dependence of symbol information
on the particular language, users should use this class as a starting point,
define information specific to the language of concern and customize the class
as necessary.

A symbol is a character string itself. This symbol table class is usually used
for compiler construction, there are five parts associated with a symbol:

1). Name: It identifies a symbol and is represented by a character string.

2). Attribute: Each symbol must fall into a category. For example, a compiler
may divide symbols into 3 categories, constants, variables and functions. An
integer is used to represent the attribute of a symbol. In this example,
constant=1(#define ATTR_CONST 1), variable=2(#define ATTR_VAR 2),
function=3(#define ATTR_FUNCT 3). Of course, in writing a real compiler,
the attribute is far more complicated.

3). Type: Every variable has an associated type that constrains its value to a
specific domain. By defining its data type, the evaluation of a variable will
become meaningful. The type of a variable normally will be defined by the
variable declaration and the type of an expression is decided by the definition
of the expression operators. The base types are defined in “abxsym.hpp” as
following:

001: #define TYPE_VOID 1
002: #define TYPE_CHAR 2
003: #define TYPE_SHORT 3
004: #define TYPE_INT 4
005: #define TYPE_LONG 5
006: #define TYPE_LONG_LONG 6
007: #define TYPE_EXTRA_INT 7
008: #define TYPE_UCHAR 8 // unsigned char
009: #define TYPE_USHORT 9 // unsigned short

33

PCYACC OO TOOLKIT • Printed - December 11, 2000

010: #define TYPE_UINT 10 // unsigned int
011: #define TYPE_ULONG 11 // unsigned long
012: #define TYPE_EXTRA_UINT 12 // Nonstandard
013: #define TYPE_FLOAT 13
014: #define TYPE_SHORT_DOUBLE 14
015: #define TYPE_DOUBLE 15
016: #define TYPE_LONG_DOUBLE 16
017: #define TYPE_EXTRA_FLOAT 17 // Nonstandard float
018: #define TYPE_ENUM 18
019: #define TYPE_UNION 19
020: #define TYPE_STRUCT 20
021: #define TYPE_CLASS 21 // C++ only
022: #define TYPE_DEFINED 22 // Typedef name
023: #define TYPE_EXTRA_PTR 23 // Nonstandard
024: #define TYPE_CONSTRUCTOR_TYPE 24 // C++ only
025: #define TYPE_DESTRUCTOR 25 // C++ only

4). Value: Besides the attribute, a symbol may also have a value. For
example, a constant normally has a value to represent a specific quantity
number. It is useful to maintain this value during compiler construction.

5). Scope: In most programming languages, a symbol has its own lifetime. It
is decided by its scope. Basically, if a symbol is global, it is in the scope 0.
Scope of inner layers has bigger scope number than the outer layers.

According to the preceding description, we come up with following symbol
table entry structure:

NAME ATTRIBUTE

Figure 6-1. Structure for symbol table

TYPE SCOPEVALUE

Possible values that can be taken by each field should be defined by the user
according to the specific needs of language.

A symbol table consists of a list of the symbol table entries. The symbol name
and its scope uniquely identify a symbol table entry. The symbol table
organizational structure is illustrated below.

34

PCYACC OO TOOLKIT • Printed - December 11, 2000

scope 0

scope 1

scope n-1

sym 00

sym 10

sym (n-1)0

sym 01

sym 11

sym (n-1)1

... ...

... ...

... ...

sym 0(m-1)

sym 1(m-1)

sym (n-1)(m-1)

Figure 6-2. Symbol table format

For each scope, a sub-table can be maintained with the same table entry
structure. This will make the scenario clear and make the table easier to
access. A variable can be set as a pointer to the current scope. To make
symbol table class independent of its client, the representation of symbol
table should be completely hidden from its client.

b. Symbol Table Entry Definition

Based on the discussion about symbol table structure above, a simple symbol
table entry can be defined as follows. Users should define the possible values
for attribute and type field according to the language of concern. Also the
ABXVALUE field should be augmented to support the possible types in the
language. The definition is shown as below.

001: union ABXVALUE {
002: int i;
003: double db;
004: char ch[80];
005: ...
006: };

007: struct ABXsymtabentry {
008: char name[80];
009: int attribute; // e.g., constant=1, variable=2,
010: // function=3
011: int type;
012: ABXVALUE value;
013: int scope;
014: struct ABXsymtabentry *next;
015: };

c. Private Class Member

001: private:

35

PCYACC OO TOOLKIT • Printed - December 11, 2000

002: int scope_indicator; // current scope indicator
003: struct ABXsymtab
004: {
005: int scope;
006: struct ABXsymtabentry *symbol_list; // subtable
007: struct ABXsymtab *next;
008: };
009:
010: struct ABXsymtab *symtab_head; // symbol table head
011: struct ABXsymtab *symtab_ptr; // current symbol table

d. Public Constructor and Destructor

ABXSymbolTable();

Set head and current symbol table pointer to NULL.

~ABXSymbolTable();

Releases all dynamically allocated memory for symbol tables. Destroys the
created symbol tables.

e. Public Member Functions

int addSymbol(char* name, int attribute, int type,
ABXVALUE value, int scp);

Add a symbol into symbol table according to input parameters. If the new
symbol is added successfully, this function returns 1, if the specified symbol
already exists in symbol table, returns 2, otherwise returns 0. The current
scope indicator and symbol table pointer have been modified accordingly.

int cleanScope(int scp);

Remove all symbols in symbol table with scope scp, set current scope
indicator and current symbol table pointer accordingly. If the specified scope
does not exist, function returns 0, otherwise returns 1.

int createScope(int scp);

Create a new scope, set current scope indicator and symbol table pointer. If
successful, function returns 1, if the scope requested already exists returns 2,
otherwise returns 0.

int deleteSymbol(char *name, int scp);

36

PCYACC OO TOOLKIT • Printed - December 11, 2000

Delete a symbol table entry according to its name and scope. Return 1 if the
symbol is deleted successfully. If the symbol does not exist, return 0. The
current scope indicator and symbol table pointer have been modified
accordingly.

int getScope(void);

Get the value of current scope indicator.

int getSymbolAttribute(char *name, int scp);

Return a symbol's attribute if the symbol was found, otherwise return -1. The
current scope indicator and symbol table pointer have been modified
accordingly.

int getSymbolType(char * name, int scp, int type);

Return a symbol’s type if the symbol was found, otherwise return -1. The
current scope indicator and symbol table pointer have been modified
accordingly.

union ABXVALUE getSymbolValue(char *name, int scp,
ABXVALUE value);

Return a symbol's value if the symbol was found, otherwise returns -1. The
current scope indicator and symbol table pointer have been modified
accordingly.

void initSymbolTable(void);

Construct a symbol table with only scope 0 (global layer).

int insertSymbol(ABXsymtabentry *symbol)

Insert symbol based on the current scope indicator and symbol table pointer.
If successful, return 1. Otherwise, return 0 (symbol already exists).

struct ABXsymtabentry *lookupSymbol (char *s, int
scp);

Look up a symbol that is already inserted in the symbol table. If the symbol is
found, return the symbol's symbol table entry pointer, otherwise return
NULL. The current scope indicator and symbol table pointer have been
modified accordingly.

int maxScope(void);

Get the biggest scope number of the symbol table.

37

PCYACC OO TOOLKIT • Printed - December 11, 2000

int setScope(int scp);

Set the current scope indicator to the scp and current symbol table pointer
has been changed accordingly. If the specified scope does not exist, the
function returns -1. Otherwise, it returns the scope number just set.

int setSymbolAttribute(char *name, int scp, int attribute);

Set symbol attribute value (defined by user) according to its name and scope.
This function will return 1 if successful, otherwise return 0. The current
scope indicator and symbol table pointer have been modified accordingly.

int setSymbolType(char * name, int scp, int type);

Set symbol data type according to its name and scope. Customers can define
their own types by using macro definitions according to their specific compiler
requirements. This function will return 1 if successful, otherwise, return 0.
The current scope indicator and symbol table pointer have been modified
accordingly.

int setSymbolValue(char *name, int scp, ABXVALUE value);

Set symbol value according to its name and scope. Return 1 if proper entry
has been found, otherwise return -1. The current scope indicator and symbol
table pointer have been modified accordingly.

38

PCYACC OO TOOLKIT • Printed - December 11, 2000

VII. ERROR HANDLER

1. Introduction

There are few errors that a lexical analyzer can detect because it lacks the
context in which the input stream appears. The parser, on the other hand,
has a much richer view of what is “correct” and can detect errors relating to
the order of tokens. It also will be harder for a parser to recover from errors
because even a single erroneous character can badly botch the overall
program structure. So when we are talking about error processing, we are
pointing to the error processing for syntactic parsers.

The errors can be divided into several categories according to their severity.
They deserve different treatments due to their severity. Some errors are
recoverable and some others just are not.

Basically, errors can be divided into 3 categories based on their severity.

1). Minor: A syntactic violation for which the parser believes it has a
correction that is likely to be what programmer intended. It fixes the
program and continues processing with a very high probability that it
'guessed' right.

2). Major: A violation for which the parser has no reliable correction. It will
attempt to continue the parsing, but will probably have to skip over part of
the input or take some other exceptional action to do so. There is a significant
risk it “guessed” wrong.

3). Panic: Things are so fouled up that the parser can not continue its job. It
terminates execution after issuing some error messages.

Therefore, we provide an error handling class in the library for these
purposes above. It includes the facilities for error reporting and error
recovering. The error reporting will give the information about the type of the
error detected, the snapshot when the error occurs.

a. Error Reporting

We need a function to issue the warning message. The warning message
should be informative enough to let caller know where the error occurs and
some internal information such as that of stacks. Considering that this class
is for the purpose of error handling of syntax parser, the target for the parser
to process is the tokens that the lexical scanner separates from the input
stream. So the error reporting should be able to point out at which line of the
input stream the error occurred, and ideally, also at which character of the

39

PCYACC OO TOOLKIT • Printed - December 11, 2000

line. The function also should be able to give the information about what kind
of error it is.

b. Error Recovery

Besides the error reporting facilities, we also need to have some facilities to
recover from errors that are not fatal to make the program halt. It is possible
for the parser to recover from an error and continue processing for additional
errors. By using error token, the parser is capable of discovering the
synchronization point in the Grammar Description File. From that point, the
parser can discard some undesirable tokens until it reaches one that follows
the error token in the GDF to continue its processing procedure.

To get the information like line number, token string, and stack states, it is
necessary for the error processing class to be able to access some data of the
lexical analyzer class and the syntactic parser class. It is unwise to make the
data member accessible from public. So, error class requires one ABXLex
and one ABXYacc object representing the current lexer and parser as its
private data members. By setting these two private data members in error
class constructor, an error object can refer its own member function to get
information from the current lexer and parser.

2. Functions for Error Reporting

Function yyError

This function simply invokes the function yyErrPrefix to implement the
error message display. Some proper message display formats should be
considered as input parameter to make the error message straight to the
customers.

Function yyErrPrefix

This function is used by the parser (a ABXYacc class instance) which is
called by function yyError to display the error message based on the
information provided by the lexical scanner (a ABXLex class instance). In
order to make the error message clear to customers, some information such
as: total number of detected errors, the current input stream, the current line
number and the token context, etc, will be displayed. The information related
to current token that the lexical scanner just returns to the parser should be
provided as input parameters.

Function yyGetCharNumber

40

PCYACC OO TOOLKIT • Printed - December 11, 2000

Get the beginning position of current token at the current line. Combine this
function and yyGetLineNumber, we can get the exact coordinate of the
current token.

Function yyGetErrFileName

This function will take input parameter to set error file name.

Function yyGetErrorCount

This function returns current error number that the lexical scanner is
currently processing.

Function yyGetExpectedTokens

Get the expected tokens. It is common that multiple tokens can fit in the
position. The function will take an integer array as parameter. After this
function is called, the array will be filled with the internal values of those
expected tokens. The returned value of this function will be the exact number
of the possible tokens. We can call function yyGetToken to convert these
tokens into character strings one by one for display.

Function yyGetLineNumber

Gets the current line number of the source file that is being scanned by the
lexical analyzer.

Function yyGetToken

yyGetToken takes the token value defined by the user as input and returns
a corresponding token context by searching the user defined token list. More
detailed information about the user defined token list structure is described
in the following Synopsis section.

Function yySetErrText

This function will use input parameter to set yyErrText(error message).

3. Functions for Error Recovery

Function yyInsertToken

Push an additional token in front of the erroneous one. The current symbol
remains unchanged.

Function yyMatchToken

41

PCYACC OO TOOLKIT • Printed - December 11, 2000

Pretend the current token matches the current symbol if it is a terminal.

Function yyReplaceToken

Replace the current token with one that legitimately might have appeared
there. The current symbol in the sentential form is unchanged.

Function yySkipSymbol

Skip the current symbol in the sentential form if it is a terminal and pretend
that it was matched. The current token is left unchanged.

Function yySkipToken

Ignore the current token and pretend it was never there. The current symbol
in the sentential form is unchanged.

The above functions are provided for error processing. The C++ skeleton
provides the basic facilities for error handling. It is up to the user to apply the
functions to satisfy the specific needs of the language.

If a parser does not provide any error recovery measure, it will stop
immediately. To make the parser robust, we need to insert some extra rules
with errors in it to make the parser recoverable when the errors occur at the
places where the extra rules are introduced. The strategies about where the
best places are to put these extra rules have been explained quite clearly in
some articles and the on-line manual on error processing. This is the part
decided by the user about how robust he/she wants to make his/her parser.
The error processing class will provide the standard procedure for error
recovery when those extra rules are inserted in the grammar description file.

The error recovery mechanisms are scattered in the body of function
yyParse(). Once the parser detects an error, it takes the code branch with
the error processing. In C++, it is possible to take advantage of the exception
handling facilities. The error recovering work could be done in the exception
handler.

4. Synopsis for ABXError Class

#include “abxerr.hpp”
ABXError* errObject;

The ABXError class definition and macro definitions are included inside file
“abxerr.hpp”. We provide the ABXError member function definitions in a
separate file named “abxerr.cpp”.

42

PCYACC OO TOOLKIT • Printed - December 11, 2000

a. Description

The library provides a class for error processing. This class contains functions
for error reporting, error handling and error recovering. Actually this class is
the expansion of the syntactic parser class. The skeleton contains the
standard error recovery mechanism in function yyParse().

Whenever a parser detects a syntax error, it calls yyError to report the error
to the user. However, in the error display phase, a token list that stores the
token values and the corresponding token context should be provided by the
users. The following token list structure is recommended:

001: static struct
002: {
003: char keyname[ABX_TEXT];
004: int tokenvalue;
005: }keywords[];

According to different requirements, the user can define the array size by
using macro definition. Any token that will appear in compiler will be put
inside this list by the users.

b. ABXError Class Definition

Just like the description in the introduction section, ABXError object has to
hold both ABXLex and ABXYacc objects as its private data members so that
an ABXError instance is granted rights to access the private part of
ABXLex and ABXYacc’s instances by requiring membership. Since all the
error handling functions will be called by the parser whenever it detects a
syntax error in the user program, some data members related to the error
display from the lexical scanner and syntax analyzer should be defined as the
private data of class ABXError.

001: class ABXError
002: {
003: Private:
004: ABXLex* lexObject;
005: ABXYacc* yaccObject;
006: int yyErrCnt;
007: char* yyErrSrc;
008: FILE* yyErrFile;
009: int yyErrLineNo;
010: char* yyErrText;
011:
012: };

43

PCYACC OO TOOLKIT • Printed - December 11, 2000

c. Public Constructor and Destructor

Assume the error processing class is named ABXError, its class constructor
will be

ABXError(ABXLex*, ABXYacc*, FILE*, char*);

This constructor will get ABXLex and ABXYacc instances with initialization
of its private data member. Since ABXError class has both ABXLex and
ABXYacc instances, the error processing can detect errors and display the
error message properly as long as the lexer and parser are working.

~ABXError();

Release all allocated memory.

d. Public Member Functions

void yyDisplay(int);

Display token context based on input token value. Normally this function is
provided by the user.

void yyError(char *, char *, char *);

This function simply calls yyErrPrefix to finish error reporting by
reformatting the error message display. The two input strings can represent
two different error messages to be displayed.

void yyErrPrefix(char *, char *);

This function takes a syntax error message as input and displays it according
to the current token information. The current token information including
line number, char position number, ..., etc, is provided by the lexer.

int yyGetCharNumber(void);

This function returns the beginning position of current token on the current
line the lexical scanner is processing.

int yyGetErrorCount(void);

This function returns current error number that the lexical scanner is
currently processing.

int yyGetExpectedTokens(int *);

44

PCYACC OO TOOLKIT • Printed - December 11, 2000

This function takes an integer array of internal values for expected tokens as
input and returns the exact number of those expected tokens.

void yyGetFileName(char *s);

This function will take input parameter to set error file name.

int yyGetLineNumber(void);

This function returns the current line number that the lexical scanner is
currently processing.

char* yyGetToken(int);

This function takes a token value (integer) as input and returns an actual
token context expressed in a character string. A user-defined token list
should be provided in order for this function to work.

void yyInsertToken(char *);

This function takes a token to be inserted as input parameter. Its purpose is
to insert a token in front of the one that will be processed by the lexer.

int yyMatchToken(char *);

This function takes a matching token as input parameter. It will return 1 if
the current token matches the actual input token value, otherwise returns 0
instead.

void yyReplaceToken(char *);

This function takes a replacing token as input and replaces the token that
will be processed by the lexer.

void yySetErrText(char *s);

This function will use input parameter to set yyErrText(error message).

void yySkipSymbol(void);

This function simply skips the current symbol in the sentential form if it is a
terminal and keeps the current token unchanged.

void yySkipToken(void);

This function makes file indicator forward one unit to skip the current token
as if the current token being processed by the lexer does not exist in the input
stream.

45

PCYACC OO TOOLKIT • Printed - December 11, 2000

VIII. PARSE TREE NODE

In compiler design, a data structure called intermediate representation or IR
is used for the compiler to communicate with the code generator. This IR is a
tree structure, so called parse tree. It has the important purpose of making
explicit hierarchical syntactic structure of sentences that is implied by the
grammar.

As a tree structure, parse tree has one or many nodes, which represent
specific syntactic meaning in the grammar. Each node has its own data called
semantic attributes. These are determined by one or more of its children.
Some actions can be imposed on this information to allow it to be synthesized
through tree or stored as field or members of the appropriate syntax tree
node. There are some necessities to implement this action.

 • It is necessary for semantic information to move down from a parent
node to a child node.

 • Some semantic information inherited from the parent node is passed
down to a child node during traversal of the parse tree.

In our PCYACC OO TOOLKIT Library, we build a parse tree node class
named ABXParseTreeNode. Each parse tree node represents an object that
not only has data member where semantic information lives, but also has its
own member functions that are capable of imposing language specification,
which are effective both at compilation and execution.

As we choose the object oriented approach to design our PCYACC OO
TOOLKIT Library, it makes it possible for the customer to take several
advantages during compiler construction. The semantic information can be
obtained by accessing ABXParseTreeNode object’s data member. The
additional dynamic semantic information that the customer would like to
impose on the language specification can be inserted into the parse tree by
using ABXParseTreeNode class’ member functions at run time.

1. Analyze Parse Tree Node Class ABXParseTreeNode

Parse tree is widely used for customers to evaluate the semantic rules. The
normal procedure would be: 1). Parse the input token stream, 2). Build the
parse tree and 3). Traverse the tree as needed.

Since each symbol has an associated set of attributes, it is necessary to
partition them into two subsets: synthesized and inherited attributes of
symbol. Each node in a parse tree contains a record with fields for holding
information and an attribute corresponding to the name of a field.

46

PCYACC OO TOOLKIT • Printed - December 11, 2000

An attribute can be a string, a number, a type, a memory location, etc. Its
value at a parse tree node is determined by production of semantic rule
applied at that node. For a synthesized attribute at a node, its value is
computed from the values of attributes at the children of that node in the
parse tree. For an inherited attribute of a node, its value is computed from all
the attribute values at the siblings and parent of that node.

The parse tree itself is a useful intermediate language representation for a
source program, especially in optimizing compilers where the intermediate
code needs to be extensively restructured. However, a parse tree often
contains redundant information that can be eliminated. In this way, a more
efficient representation of the source program is produced.

In the design phase we are responsible for generating specification of class
communication and membership. A general procedure is to discover the parse
tree objects and then arrange them into clusters that ultimately become
class.

The parse tree nodes have various attributes. Some have attributes just
pointing to other parse tree nodes. Several classifications of parse tree node
are necessary for customers to construct their compiler.

001: Program node: this actually could serve as root of
parse tree.

002: Declaration nodes:
003: * Constant definition nodes.
004: * Type definition nodes.
005: * Variable declaration nodes.
006: * Procedure-function declaration nodes.
007: Statement nodes.
008: Expression nodes.
009: Leaf nodes.

Each of these nodes will be a subclass of the general class of parse tree nodes.
By analyzing these nodes attributes we need to place all the data members
and member functions that are common for all parse tree nodes into the
general class. Some specific data member and member functions for the
appropriate parse tree node will be put in the subclass as its members.

By using PCYTOOL, the parser will recognize the input program first,
followed by building a parse tree from the bottom up. The first recognized
grammar productions are those specifying or containing reference to the
lexeme token. These tokens are mostly responsible for a parse tree node,
which normally is a leaf object of the tree. The subsequent grammar
production to be completely recognized by the parser is the one that calls the
lexeme token production. The proper parse tree node will be built for this

47

PCYACC OO TOOLKIT • Printed - December 11, 2000

grammar production based on all the lowest level token productions that
have been recognized. By following these procedures until the highest
grammar productions have been processed, we can simulate the parse
recognition of process to build up the parse tree. The scenario to mimic the
parser recognizing the grammar is described as follows:

1). Start with lowest level grammar production.

2). Insert the corresponding leaf to the list of objects.

3). Move down and up the grammar.

 * Find a production up one level that calls one of the
 present production.

 * Trace down the grammar. Find all leaves referenced by
 this production and add the objects for parse tree nodes
 and leaves using the order in which they would be
 recognized by the parser.

The discussion above is an analysis for building parse tree node class. In the
following sections, we will focus on describing data members and member
functions provided in our ABXParseTreeNode class.

2. Structure for ABXParseTreeNode Class

A general parse tree node class that encapsulates the common property for
all the other tree nodes should be built as the base class. Additional
information corresponding to a particular class will be added in the derived
node class. So some member functions in this base class should be defined as
virtual functions to allow the subclass to modify them according to their
needs.

001: class ABXParseTreeNode
002: {
003: public:
004: ABXParseTreeNode();
005: virtual ABXParseTreeNode* build_tree();
006: virtual ABXParseTreeNode* append_node();
007: virtual ABXParseTreeNode* delete_node();
008: virtual ABXParseTreeNode* lookup_tree();
009: virtual ABXParseTreeNode* optimize_tree();
010: virtual void print_tree();
011: virtual int get_token();
012: private:
013: int tok;

48

PCYACC OO TOOLKIT • Printed - December 11, 2000

014: };

ABXParseTreeNode();

This constructor initializes private data member for parse tree base class.

~ABXParseTreeNode();

Destroy all dynamically allocated memory for parse tree base class.

3. Structure for ABXLeaf Class

Leaf object should take lexeme value and store it as class member for future
access. Also the corresponding type for this lexeme will be considered as data
member for ABXLeaf class. In order to encapsulate the lexemes and
corresponding types, the ABXLeaf class will be defined like:

001:
002: {
003: public:
004: ABXLeaf();
005: private:
006: char *tok_name;
007: int type;
008: };

ABXLeaf();

The task for this constructor is to initialize the data members for ABXLeaf
class. All the preparation work for ABXLeaf object is done here.

~ABXLeaf();

Destroy all dynamically allocated memory for ABXLeaf class.

In order to manipulate the parse tree with the statement list, function
parameter list, etc., an ABXLeafList class is necessary to take the whole list
as single input for this purpose. The ABXLeafList definition is shown as
below:

001: class ABXLeafList : public ABXParseTreeNode
002: {
003: public:
004: ABXLeafList();
005: ABXLeafList(ABXParseTreeNode *);
006: ABXParseTreeNode* append_node(ABXParseTreeNode *);
007: ABXParseTreeNode* delete_node(ABXParseTreeNode *);
008: ABXLeaf* create_leaf_list();

49

PCYACC OO TOOLKIT • Printed - December 11, 2000

009: private:
010: ABXLeaf* leaf_list_head; // head of leaf list
011: ABXLeaf* leaf_list_tail; // tail of leaf list
012: };

ABXLeafList(); or ABXLeafList(ABXParseTreeNode *);

ABXLeafList class will provide two constructors. The first one will simply
initialize the data members. The second one will take a pointer to
ABXParseTreeNode as input, set corresponding information to the data
members in ABXLeafList class.

~ABXLeafList();

Destroy all dynamically allocated memory for ABXLeafList class.

ABXParseTreeNode* append_node(ABXParseTreeNode *);

This function will take a pointer to parse tree as input. After appending the
current leaf nodes to the parse tree, the corresponding pointer to parse tree
node will be returned.

ABXParseTreeNode* delete_node(ABXParseTreeNode *);

This function will take a pointer to parse tree as input. After deleting the
current leaf nodes to the parse tree, the corresponding pointer to parse tree
node will be returned.

ABXLeaf* create_leaf_list();

This function creates a leaf list according to the current leaf node’s
information hidden in the ABXLeafList object. A corresponding ABXLeaf
pointer to the created leaf list will be returned.

4. Expression Classes ABXExprNode

Since there are several different expression objects for any given parse tree,
we can build ABXExprNode class to represent their instances. For lengthy
strings, we can always expect the inheritance based on some common data
member and functions. As every expression has a basic type and a function to
be used in execution, these members must be considered as expression base
class data member. Any additional data members will be put into derived
expression class for specific expression objects. The base expression class
ABXExprNode is defined as following:

001: class ABXExprNode
002: {

50

PCYACC OO TOOLKIT • Printed - December 11, 2000

003: public:
004: ABXExprNode();
005: ABXExprNode(int type);
006: virtual ABXSymbolTable* get_attr();
007: private:
008: int type;
009: ABXVALUE value;
010: };

ABXExprNode(); or ABXExprNode(int type);

The initialization of data member for class ABXExprNode will be done in
these two constructors.

~ABXExprNode();

Destroy all dynamically allocated memory for ABXExprNode class.

virtual ABXSymbolTable* get_attr();

This function will search the symbol table to find a corresponding table entry
for this current particular expression.

During compiler design, we need to handle the information hidden in
multiple expressions, a class representing this kind of linked list expressions
that derived from the base class ABXParseTreeNode should be generated.
We name this class as ABXExprNodeList, the class definition is like the
following:

001: class ABXExprNodeList : public ABXParseTreeNode
002: {
003: public:
004: ABXExprNodeList();
005: ABXExprNodeList(ABXParseTreeNode* expr);
006: ABXParseTreeNode* append_node(ABXParseTreeNode*);
007: private:
008: ABXExprNode* expr_head;
009: ABXExprNode* expr_tail;
010: };

ABXExprNodeList(); or
ABXExprNodeList(ABXParseTreeNode* expr);

The initialization of data member for class ABXExprNodeList is done here.

~ABXExprNodeList();

Destroy all dynamically allocated memory for ABXExprNodeList class.

51

PCYACC OO TOOLKIT • Printed - December 11, 2000

ABXParseTreeNode* append_node(ABXParseTreeNode*);

This function takes a pointer to a parse tree node as input, appends the
current expression list to the parse tree node and returns a pointer to the
decorated parse tree.

5. Structure for Parse Tree Class ABXParseTree

This class will be used to create instances of a parse tree by using instance of
class ABXParseTreeNode. Some member functions are provided for the
user to view the parse tree generated by PCYACC. The class definition for
this class is presented below:

001: class ABXParseTree
002: {
003: public:
004: ABXParseTree(ABXParseTreeNode *root);
005: ABXParseTreeNode* optimize(ABXParseTreeNode *);
006: void print_tree(ABXParseTreeNode *);
007: void show_tree(ABXParseTreeNode *);
008: ABXParseTreeNode* execute_tree(ABXParseTreeNode *);
009: ABXParseTreeNode* decorate_tree(ABXParseTreeNode

*, ...);
010: public:
011: ABXParseTreeNode* root;
012: };

ABXParseTree(ABXParseTreeNode *root)

This ABXParseTree class constructor will take the parse tree generated by
PCYACC machine or parse tree root as input information, and then set the
corresponding ABXParseTree data member to create a parse tree instance.

~ABXParseTree();

Destroy all dynamically allocated memory for ABXParseTree class.

ABXParseTreeNode* optimize(ABXParseTreeNode *);

This function will optimize the generated parse tree to make it more efficient.

void print_tree(ABXParseTreeNode *);

This function will create a hard copy for a specific parse tree.

void show_tree(ABXParseTreeNode *);

52

PCYACC OO TOOLKIT • Printed - December 11, 2000

This function can display a parse tree based on the pointer to a user-specified
parse tree.

ABXParseTreeNode* execute_tree(ABXParseTreeNode *);

This function can traverse the whole parse tree from the bottom and return a
pointer to the top parse tree node based on a pointer to the user-specified
parse tree node.

ABXParseTreeNode * decorate_tree(ABXParseTreeNode *, ...);

This function can add some information to a specific parse tree, or insert a
parse tree node, etc.

53

PCYACC OO TOOLKIT • Printed - December 11, 2000

IX. Java Parser and Lexer

1. Introduction

Although Java is a pretty new programming language, it brings the
advantage of building applications that will run cross-platform and through
network. It also provides object-oriented capability like C++. With the syntax
similar to C/C++ and extensive extensions, the Java programming language
has been widely received by the world community of software developers and
internet providers as the new generation language after C++. Because of
Java’s popularity, supporting Java Parser has become one of our important
tasks as a PCYACC tool provider.

Java is fully object-oriented, even more than C++. C++ parser is widely used
in today’s programming world and there is a stable set of classes used for it.
Our design will focus on establishing a Java class equivalent to every C++
class used for C++ parser.

Symbol table management is a commonly used technique in compiler
construction, and parse tree plays an important role of making explicit
hierarchical syntactic structure of sentences that is implied by the grammar.
In addition to Java Yacc, Lex and error classes, we also provide symbol table
and parse tree classes.

54

PCYACC OO TOOLKIT • Printed - December 11, 2000

The structure of Java class library is shown as following:

class
JavaSymbolTable

class
JavaYacc

class
JavaError

yyLex()

source file

functions give the
information about
the position when
error occurs

functions reporting the
stack status, recovering
from error

Figure 9-1. Structure of Java Class Library

class
JavaParseTree

class
JavaLex

Where functions for five basic classes are:

1). JavaLex Lexical Analyzer Class: this class serves as a code skeleton
for PCLEX.

2). JavaYacc Syntax Parser Class: this class supports syntactic parser
PCYACC.

3). JavaSymbolTable Symbol Table Class: this class is used for symbol
table management.

4). JavaError Error Handling Class: this class is responsible for error
reporting.

5). JavaParseTree Parse Tree Class: this class is available when the user
wants to construct parse trees.

55

PCYACC OO TOOLKIT • Printed - December 11, 2000

There are two phases to create a Java parser. The following diagram shows
these procedures:

myparser.y

PCYACC

myparser.h myparser.c

PCYTOOL

pcy_sk.jav

myparser.java

Figure 9-2. Diagram of Java parser generated by
PCYTOOL

In the first phase, based on the availability of grammar description file,
simply invoke the PCYACC tool on the command line to create a C parser.
Once the C parser is generated by PCYACC, a utility program named
PCYTOOL is needed for generating a Java parser in the second phase.

56

PCYACC OO TOOLKIT • Printed - December 11, 2000

There are two phases to create a Java Lexer. The following diagram shows
these procedures:

 mylexer.l

 PCLEX

 mylexer.c myparser.h

PCLTOOL

pcl_sk.jav

 mylexer.jav

Figure 9-3. Diagram of Java lexer generated by
PCLTOOL

In the first phase, based on the availability of scanner description file, simply
invoke the PCLEX tool on the command line to create a C lexer. Once the C
lexer is generated by PCLEX, a utility program named PCLTOOL is needed
for generating a Java lexer in the second phase.

2. Java Class Library

We will introduce several Java classes that are equivalent to the C++ class
library. These classes will be used for generating Java parser, lexer and for
other auxiliary functionality. Detailed definition and member function
description will be given for each class.

a. JavaLex Class

Class Data Members:

private static FileInputStream lex_fis;

lex_fis is defined as lexer input file stream. It will be initialized in JavaLex
constructor.

001: private static final int YY_END_TOK = 0;

57

PCYACC OO TOOLKIT • Printed - December 11, 2000

002: private static final int YY_NEW_FILE = -1;
003: private static final int YY_DO_DEFAULT = -2;
004: private static final int YY_NULL = 0;
005: private static final int BUFSIZ = 4096;
006: private static final int F_BUFSIZ = 4096;
007: private static final int YY_BUF_SIZE = 8192;
008: private static final int YY_BUF_MAX = 8191;
009: private static final int YY_MAX_LINE = 4096;
010: private static final int YY_BUF_LIM = 4095;

Java language does not support macro definition. However, in traditional C
lexer generated by PCLEX tool, there are a lot of macros involved, which
provides a lot of convenience to the users. The previously listed constants like
F_BUFSIZ, YY_BUF_SIZE, YY_BUF_MAX, YY_MAX_LINE and
YY_BUF_LIM, have been defined based on BUFSIZ with a default value of
4096. For details about how to assign the values of these constants, please
refer to a C lexer source code generated by PCLEX.

001: private static int yy_start;
002: private static int yy_b_buf_p;
003: private static int yy_c_buf_p;
004: private static int yy_e_buf_p;
005: private static int yy_saw_eof = 1;
006: private static int yy_init = 1;
007: private static char yy_ch_buf[] = new char[YY_BUF_SIZE+1];
008: private static int yy_st_buf[] = new int[YY_BUF_SIZE];
009: private static char yy_hold_char;
010: private static char yytext[] = new char[BUFSIZ];
011: private static int yyleng;
012: private static int yy_lp;
013: private static int yy_curst
014: private static int reject_flag = 0;
015: private int yylineno = 1;

These variables are originally defined as globals in a C lexer. Since we have
defined JavaLex class, all these variables used for the lexer will be put
inside the JavaLex class scope and act as its private members.

Class member functions:

public JavaLex(FileInputStream finput) { }

This function is used to initialize the objects of a JavaLex class – giving the
instance variables the initial state you want them to have.

int get_yylineno() { }

58

PCYACC OO TOOLKIT • Printed - December 11, 2000

yylineno is a private data member of the JavaLex class. This function is
used to fetch yylineno information, which normally is used for error
reporting.

int input() { }

This function returns the next character from input stream.

void unput(char c) { }

This function puts a character back to the logical input stream. You can call
several times in a row to put several characters back into the input stream.

private static void YY_DEFAULT_ACTION() { }

This function is defined as a macro in a C lexer. It will emit information of
yytext buffer to the standard output.

private static int YY_INPUT (char buf[], int buf_offset, int max_size) { }

This function deals with the storage of input stream into a lexer. It gets input
from the input stream and stores it into a buffer, which the user can specify
as the function call parameter.

private static void YY_OUTPUT(char c) { }

This function outputs one character to the standard output.

private static void YY_FATAL_ERROR(String s) { }

This function prints out the string specified in as the function call parameter
to the standard error.

private static boolean yywrap() { }

This function simply returns boolean value true.

private static void YY_SET_EOL(char array[], int pos) { }

This function sets a new line character on a special position of an array.

private static void yyless(int n) { }

This function tells the lex to “push back” part of the token that was just read.
The argument to yyless() is the number of token characters to push back
into the input stream.

private static void YY_INIT() { }

59

PCYACC OO TOOLKIT • Printed - December 11, 2000

This function is used to initialize the scanner’s state.

private static int YY_LENG() { }

This function returns the length for the text of the token stored in yytext.

private static void YY_DO_BEFORE_SCAN() { }

This function puts the character that the scanner holds at the end of yytext.

private static void YY_DO_BEFORE_ACTION() { }

This function does some preparation job before the scanner takes actions.

private static void REJECT(int yy_full_match) { }

This function puts back the text matched by the pattern and finds the next
best match for it.

int yylex() { }

This function is used to start or resume scanning. It separates an input
character stream into tokens following the patterns specified in lex (*.l) file.

char [] get_yytext() { }

This function returns the current token in the lex token buffer.

b. JavaYacc Class

Class Data Member:

private static String pcyyerrsrc;
private static FileInputStream fis;

pcyyerrsrc defines the input source file name that the parser is processing.
If error occurs, the error reporting mechanism will be able to indicate which
input source file processing has errors. fis is defined as an input stream to a
parser, which will be used to pass a lexer object’s internal information to the
parser.

private static imp_union yylval = new imp_union();
private static imp_union yyval = new imp_union();

These two variables are used to pass the value of the token to a syntax
analyzer. So they are defined as union type in a C equivalent lexers, which is
represented by imp_union class in Java.

60

PCYACC OO TOOLKIT • Printed - December 11, 2000

private static int pcyyerrfl=0;
private static int pcyyerrcnt=0;
private static int pcyytoken=-1;
private static int pcyylineno;
int list = 0;

These variables are defined as globals in a C parser. In Java, they are defined
as JavaYacc class data members.

JavaLex lexobject;

A lex object is defined as a JavaYacc member so that the JavaYacc object
can access the JavaLex information.

Class Member Functions:

public JavaYacc(JavaLex lex_object, String
input_file_name) { }

public JavaYacc(String input_file_name,
FileInputStream f) { }

public JavaYacc() { }

These three JavaYacc constructors deal with three different parser
situations, integrated case with both lex and yacc objects, stand-alone yacc
with hand-coded lexer whose input is either from standard input or file input
stream.

private static void set_input_file_name(String fname) { }

This function is used to set pcyyerrsrc so that error report could show which
input source file the parser is processing.

int yyparse() { }

This function is the entry point to a yacc-generated parser. When your
program calls the member function yyparse(), the parser attempts to parse
an input stream. The parser returns a value of zero if the parse succeeds and
non-zero if not.

private static void yyerrok() { }

This function is implemented to replace a macro in a C parser. It tells the
parser to return to the normal state, which can avoid the problem of multiple
error messages resulting from a single mistake as the parser gets
resynchronized.

int get_yyerrcnt() { }

61

PCYACC OO TOOLKIT • Printed - December 11, 2000

This function simply returns pcyyerrcnt value in case the other class would
like to access this internal variable of JavaYacc class.

c. JavaError Class

This class provides functions for error processing. It contains functions for
error reporting, error handling and error recovering. Actually this class is the
expansion of the syntactic parser class.

Class Data Member:

001: JavaLex lexObject;
002: JavaYacc yaccObject;

JavaError object has both JavaLex and JavaYacc objects as its private
data members so that a JavaError instance is granted rights to access the
private part of JavaLex and JavaYacc’s instances by requiring
membership.

003: private static int yyErrCnt;
004: private static String yyErrSrc;
005: private static FileInputStream yyErrFile;
006: private static int yyErrLineNo;
007: private static String yyErrText;

These variables are defined as the private static members of JavaError
class so that the other class’ instance can access them by requiring
membership.

Class Member Function:

JavaError(JavaLex LexObject, JavaYacc YaccObject,
FileInputStream yyerrfile, String yyerrsrc) { }

This constructor will construct JavaLex and JavaYacc instances and
initialize their private data members. Since JavaError class has both
JavaLex and JavaYacc instances, the error processing can detect errors
and display the error message properly as long as the lexer and parser are
working.

private static String yyGetToken(int tokenvalue) { }

This function takes a token value (integer) as input and returns an actual
token context expressed in a character string. The user defined token list
should be provided in order for this function to work.

private static int yyGetLineNumber() { }

62

PCYACC OO TOOLKIT • Printed - December 11, 2000

This function returns the current line number that the lexical scanner is
currently processing.

private static int yyGetErrorCount() { }

This function returns the current error number that the lexical scanner is
currently processing.

private static void yyGetErrFileName(String s) { }

This function copies yyErrSrc to string s, which will provide the source file
name the parser is processing.

private static void yySetErrText(String s) { }

This function will use a input parameter to set yyErrText (error message).

private static int yyGetCharNumber() { }

This function returns the beginning position of the current token on the
current line, which the lexical scanner is processing.

private static int yyGetExpectedTokens(int token_list[]){ }

This function takes an integer array of the internal values for expected
tokens as input and returns the exact number of those expected tokens.

private static void yyErrPrefix(String msg, String
YYTEXT) { }

This function takes a syntax error message as an input and displays it
according to the current token information. The current token information
including a line number, a character position number, …, etc, is provided by
the lexer.

private static void yyError(String s, String t,
StringYYTEXT) { }

This function simply calls yyErrPrefix to finish error reporting by
reformatting the error message display. The two input strings can represent
two different error messages to be displayed.

private static void yySkipToken() { }

This function makes file indicator forward one unit to skip the current token
as if the current token being processed by the lexer does not exist in the input
stream.

63

PCYACC OO TOOLKIT • Printed - December 11, 2000

private static void yySkipSymbol() { }

This function simply skips the current symbol in the sentential form if it is a
terminal and keeps the current token unchanged.

private static void yyReplaceToken(String token) { }

This function takes a replacing token as an input and replaces the token that
will be processed by the lexer.

private static int yyMatchToken(String token) { }

This function takes a matching token as an input parameter. It will return 1
if the current token matched the actual input token value, otherwise returns
0 instead.

private static void yyInsertToken(String token) { }

This function takes a token to be inserted as an input parameter. Its purpose
is to insert a token in front of the one that will be processed by the lexer.

private static String yyDisplay(int tokenvalue) { }

Display token context based on the input token value. Normally, this function
is provided by the user.

d. JavaParseTree Class

A general parse tree node class that encapsulates the common property for
all the other tree nodes should be built as the base class. Additional
information corresponding to a particular class will be added in the derived
node class. Since Java language provides us with methods to redefine
subclasses, some member functions in this base class should only have basic
functionality to allow subclasses to modify them according to their needs.

(i). JavaParseTreeNode Class

Class Data Member:

JavaLex lex_tok;

Class Member Function:

JavaParseTreeNode() { }

This constructor initializes the private data member for the parse tree base
class.

64

PCYACC OO TOOLKIT • Printed - December 11, 2000

001: public JavaParseTree build_tree() { }
002: public JavaParseTree append_node() { }
003: public JavaParseTree delete_node() { }
004: public int execute() { }
005: public JavaParseTree lookup_tree() { }
006: public JavaParseTree optimize_tree() { }
007: public void print_tree() { }
008: public int get_token() { }

All these functions only provide prototype functionality. The actual
functionality will be implemented in the member functions of the derived
subclasses.

(ii). JavaLeaf Class

Class Data Member:

private static String tok_name;
private static int type;

These two members will allow JavaLeaf class to encapsulate the lexemes
and the corresponding types.

Class Member Function:

JavaLeaf() { }

The task for this constructor is to initialize the data members for JavaLeaf
class. All the preparation work for JavaLeaf object is done here.

(iii). JavaLeafList Class

Class Data Member:

JavaLeaf leaf_list_head;
JavaLeaf leaf_list_tail;

These two variables can be used to retrieve JavaLeafList information so
that the user can use them to manipulate parse trees for statement list,
function parameter list, etc.

Class Member Function:

JavaLeafList() { }
JavaLeafList(JavaParseTreeNode Leaf) { }

The first constructor will simply initialize the data members. The second one

65

PCYACC OO TOOLKIT • Printed - December 11, 2000

will take a reference to JavaParseTreeNode as input, set corresponding
information to the data members in JavaLeafList class.

public JavaParseTreeNode append_node(JavaParseTreeNode
Leaf) { }

This function will take a reference to a parse tree as an input. After
appending the current leaf nodes to the parse tree, the corresponding
reference to the parse tree node will be returned.

public JavaParseTreeNode delete_node(JavaParseTreeNode
Leaf) { }

This function will take a reference to a parse tree as an input. After deleting
the current leaf nodes to the parse tree, the corresponding reference to the
parse tree node will be returned.

public JavaLeaf create_leaf_list() { }

This function creates a leaf list according to the current leaf node’s
information hidden in the JavaLeafList object. A corresponding JavaLeaf
reference to the created leaf list will be returned.

(iv). JavaExprNode Class

Class Data Member:

private static int type;
private static ABXVALUE value;

Every expression is associated with one type and one value. So these two
variables will be designed as JavaExprNode class data members.

Class Member Function:

JavaExprNode() { }
JavaExprNode(int Type) { }

The initialization of data members for class JavaExprNode will be done in
these two constructors.

JavaSymbolTable get_attr() { }

This function will search the symbol table to find a corresponding table entry
for this current particular expression.

66

PCYACC OO TOOLKIT • Printed - December 11, 2000

(v). JavaExprNodeList Class

Class Data Member:

JavaExprNode expr_head;
JavaExprNode expr_tail;

These two variables are used to keep track information for the linked list of
expression nodes.

Class Member Function:

JavaExprNodeList() { }
JavaExprNodeList(JavaParseTreeNode Expr) { }

The initialization of data member for class JavaExprNodeList is done here.

JavaParseTreeNode append_node(JavaParseTreeNode Expr) { }

This function takes a reference to a parse tree node as an input, appends the
current expression list to the parse tree node, and returns a reference to the
decorated parse tree.

(vi). JavaParseTree Class

Class Data Member:

private JavaParseTreeNode root;

JavaParseTree class will store a reference to the root of a parse tree as its
private data.

Class Member Function:

JavaParseTree(JavaParseTreeNode Root) { }

This constructor will take the parse tree generated by PCYACC machine or a
parse tree root as input information, and then set the corresponding
JavaParseTree data member to create a parse tree instance.

JavaParseTreeNode optimize(JavaParseTreeNode Tree) { }

This function will optimize the generated parse tree to make it more efficient.

void print_tree(JavaParseTreeNode Tree) { }

This function will create a hard copy for a specific parse tree.

67

PCYACC OO TOOLKIT • Printed - December 11, 2000

void show_tree(JavaParseTreeNode Tree) { }

This function can display a parse tree based on the reference to a user
specified parse tree.

JavaParseTreeNode execuate_tree(JavaParseTreeNode Tree) { }

This function can traverse the whole parse tree from the bottom, and
return a reference to the top parse tree node based on a pointer to the user
specified parse tree node.

JavaParseTreeNode decorate_tree(JavaParseTreeNode Tree) { }

This function can add some information to a specific parse tree, or insert a
parse tree node, etc.

e. JavaSymbolTable Class

In Java, there are no equivalent structures to C++ unions and structs.
Generally structs are easy to convert -- just change them to classes.
Remember that in C++ the default access control in structs is public
(while in classes it is private), so mark members public accordingly.

001: union ABXVALUE {
002: int i;
003: double db;
004: char ch[80];
005: };

Corresponds to

001: class ABXVALUE
002: {
003: public int i;
004: public double db;
005: public char ch[80];
006: }

And

007: struct ABXsymtabentry
008: {
009: char name[80];
010: int attribute;
011: int type;
012: ABXVALUE value;
013: int scope;
014: struct ABXsymtabentry *next;

68

PCYACC OO TOOLKIT • Printed - December 11, 2000

015: };

Corresponds to

001: class ABXsymtabentry
002: {
003: public String name;
004: public int attribute;
005: public int type;
006: public ABXVALUE value;
007: public int scope;
008: public ABXsymtabentry next;
009: }
010: struct ABXsymtab
011: {
012: int scope;
013: struct ABXsymtabentry *symbol_list;
014: struct ABXsymtab *next;
015: };

Corresponds to

001: class ABXsymtab
002: {
003: public int scope;
004: public ABXsymtabentry symbol_list;
005: public ABXsymtab next;
006: }

Class Data Member:

int scope_indicator;

This variable can be used to indicate the current scope number.

ABXsymtab symtab_head;
ABXsymtab symtab_tail;

These two variables are used to keep track of a symbol table list.

Class Member Function:

JavaSymbolTable() { }

Set head and current symbol table reference to NULL.

int addSymbol(String Name, int Attribute, int Type,
ABXVALUE Value, int Scope) { }

69

PCYACC OO TOOLKIT • Printed - December 11, 2000

Add a symbol into a symbol table according to input parameters. If the
new symbol is added successfully, this function returns 1, if the specified
symbol already exists in symbol table, returns 2, otherwise returns 0. The
current scope indicator and symbol table reference have been modified
accordingly.

int cleanScope(int Scope) { }

Remove all symbols in a symbol table with scope Scope, set the current
scope indicator and current symbol table reference accordingly. If the
specified scope does not exist, function returns 0, otherwise returns 1.

int createscope(int Scope) { }

Create a new scope, set the current scope indicator and symbol table
reference. If successful, function returns 1, if the scope requested already
exists returns 2, otherwise returns 0.

int deleteSymbol(String Name, int Scope) { }

Delete a symbol table entry according to its name and scope. Return 1 if
the symbol is deleted successfully. If the symbol does not exist, return 0.
The current scope indicator and symbol table reference have been
modified accordingly.

int getScope() { }

Get the value of the current scope indicator.

int getSymbolAttribute(String Name, int Scope) { }

Return a symbol’s attribute if the symbol was found, otherwise return –1.
The current scope indicator and symbol table reference have been
modified accordingly.

int getSymbolType(String Name, int Scope, int Type) { }

Return a symbol’s type if the symbol was found, otherwise return –1. The
current scope indicator and symbol table reference have been modified
accordingly.

ABXVALUE getSymbolValue(String Name, int Scope,
ABXVALUE Value) { }

Return a symbol’s value if the symbol was found, otherwise return –1. The
current scope indicator and symbol table reference have been modified
accordingly.

70

PCYACC OO TOOLKIT • Printed - December 11, 2000

void initSymbolTable() { }

Construct a symbol table with only scope 0 (global layer).

int insertSymbol(ABXsymtabentry Symbol) { }

Insert a symbol based on the current scope indicator and symbol table
reference. If successful, return 1. Otherwise, return 0 (symbol already exists).

ABXsymtabentry lookupSymbol(String Name, int Scope) { }

Look up a symbol that is already inserted in the symbol table. If the symbol is
found, return the symbol’s symbol table entry reference, otherwise return
NULL. The current scope indicator and symbol table reference have been
modified accordingly.

int maxScope() { }

Get the biggest scope number of the symbol table.

int setScope(int Scope) { }

Set the current scope indicator to the Scope and current symbol table
reference will be changed accordingly. If the specified scope does not exist,
the function returns –1, Otherwise, it returns the scope number just set.

int setSymbolAttribute(String Name, int Scope, int
Attribute) { }

Set a symbol attribute value (defined by user) according to its name and
scope. This function will return 1 if successful, otherwise return 0. The
current scope indicator and symbol table reference have been modified
accordingly.

int setSymbolType(String Name, int Scope, int Type) { }

Set a symbol data type according to its name and scope. Customers can define
their own type by using macro definitions according to their specific compiler
requirements. This function will return 1 if successful, otherwise, return 0.
The current scope indicator and symbol table reference will be modified
accordingly.

int setSymbolValue(String Name, int Scope, ABXVALUE
Value) { }

Set a symbol value according to its name and scope. Return 1 if proper entry
has been found, otherwise return –1. The current scope indicator and symbol
table reference will be modified accordingly.

71

PCYACC OO TOOLKIT • Printed - December 11, 2000

3. Example

For flexibility reasons and cross platform compatibility, Java programming
language is not as powerful as the C programming language. Translating a C
parser into a Java parser is thus nontrivial and it is important to follow the
correct procedures so that you can create a runnable Java parser when you
use our PCYTOOL and PCLTOOL to translate C parser and lexer into Java
parser and lexer.

If you want to create a standalone Java parser, you need to provide yylex
function as a JavaYacc class member function in the user function section of
GDF. PCYTOOL will check yylex function to identify if it is processing a
standalone Java parser. All the content in the user function section of GDF
will be treated as JavaYacc class members and put into JavaYacc class
scope except user provided classes. Please check CALC or SQL example in
our JAVA SDK package for details.

If you want to create a standalone Java lexer, you also need to provide
yyparse function as a JavaLex class member function in the user function
section of SDF. PCLTOOL will check yyparse function to identify if it is
processing a standalone Java lexer. All the content in the user function
section of SDF will be treated as JavaLex class members and put into
JavaLex class scope except user provided classes. Please check the WC
example in our JAVA SDK package for details.

If you want to create an integrated Java parser and lexer, there are at least
three Java classes that have been created (main driver class, JavaYacc class
and JavaLex class, which are generated from three different files).
Everything inside the user function section will be treated as JavaYacc or
JavaLex class members except the user provided classes. However, the user
has to make sure that no yylex function is inside GDF and no yyparse
function is inside SDF. Otherwise, PCYTOOL or PCLTOOL will generate a
standalone Java parser or lexer. Since lexer will use token value information,
so “*.h” files generated by PCYACC (-D option) should be included on the
PCLTOOL command line. Please check JAVA grammar in the Java example
for detail.

We will introduce a simple standalone calculator parser in Java here to
demonstrate how to use our Java classes.

001: %union{
002: double db;
003: }
004:
005: %token NEWLINE
006: %token NUMBER

72

PCYACC OO TOOLKIT • Printed - December 11, 2000

007: %left '+' '-' /* left associative */
008: %left '*' '/' /* left associative */
009: %left UNARYMINUS /* left associative */
010:

Lines 1 through 6 form the so-called declaration section, where token
symbols, operator precedences, etc., are declared.

Lines 001 through 003 define YYSTYPE. PCYTOOL will put the content
of this union declaration into imp_union class since Java would not support
union type by now.

Lines 005 through 006 declare two tokens, which can not be used on the
left-hand side of grammar rules.

Lines 007 through 009 define the associativity of the arithmetic operators
involved. All the operators are declared to be left associative (i.e., if the
statement is a+b+c, the a+b will be calculated first). These statements also
convey the following information: addition (+) and subtraction (-) have the
same precedence; multiplication (*) and division (/) have the same precedence
and it is higher than addition or subtraction; the unary operator, namely the
negation sign, has the highest precedence.

011: %%
012:

The delimiter %% on line 011 separates grammar rule section from user
declaration section..

Lines 013 through 043 form grammar rule section, which is the main body
of GDF.

013: list: /* nothing */
014: { prompt(); }
015: | list NEWLINE /* change ALL '\n' to token newline */
016: { prompt(); }
017: | list expr NEWLINE
018: {
019: if ($2.db == QUIT)
020: {
021: return(0);
022: }
023: else
024: {
025: System.out.println(" RESULT ====>" + $2.db);
026: System.out.flush();
027: prompt();

73

PCYACC OO TOOLKIT • Printed - December 11, 2000

028: }
029: }
030: | list error NEWLINE
031: {
032: yyerror;
033: prompt();
034: }
035: ;

Lines 013 through 035 state that a list can either be empty, be a list
followed by a new line character, be a list followed by an expression and a
new line character, or be a list followed by something which is an error.
Everything enclosed in braces is called actions. Any function used here
except from JavaYacc class has to be provided by the user in the user
function section of GDF and will be incorporated as JavaYacc class member
functions.

036: expr: NUMBER { $$.db = $1.db; }
037: | '-' expr %prec UNARYMINUS { $$.db = -$2.db; }
038: | expr '+' expr { $$.db = $1.db + $3.db; }
039: | expr '-' expr { $$.db = $1.db - $3.db; }
040: | expr '*' expr { $$.db = $1.db * $3.db; }
041: | expr '/' expr { $$.db = $1.db / $3.db; }
042: | '(' expr ')' { $$.db = $2.db; }
043: ;

Lines 036 through 043 contain the rules on how to form expr nonterminal.
Since $x is a variable which will be used for communication with parser, so in
these rules the correspondent content associated with every terminal or
nonterminal has to be assigned value.

044: %%
045:
046:
047: private static final int QUIT = 101010;
048: private static final int LF = 0x0a;
049: private static final int CR = 0xd;
050:
051: private static PushbackInputStream in =
052: new PushbackInputStream(System.in);
053:

%% on Line 044 is a delimiter that separates the grammar rule section from
the program section. Everything in the program section must be written in
Java, and it will be copied to the output of PCYACC. Then it will be moved
into JavaYacc class body by PCYTOOL if the code portion is not the user
provided class. This section also defines two major Java member functions:

74

PCYACC OO TOOLKIT • Printed - December 11, 2000

yylex() and yyerror(). Since yylex function is provided, so PCYTOOL will
treat this application as a standalone parser. These two functions are always
required to provide support for the parser.

Lines 051 through 052 define a PushbackInputStream object as input
source to the parser.

054: private static int yylex()
055: {
056: /* user's own lexer written in Java */
057: }
058:

Lines 054 through 057, the lexical analyzer, yylex() is responsible for
decomposing raw text strings into meaningful lexical units, called tokens,
and passing this information to the parser. Since this example is a
standalone Java parser, the user has to write his/her Java lexer to return
tokens to the syntactic parser.

059: /* invoke prompt line */
060: private static void prompt()
061: {
062: System.out.print("READY> ");
063: System.out.flush();
064: }
065: /* display error message */
066: private static void yyerror(String s, String t)
067: {
068: System.out.println(s+" near line " + pcyylineno);
069: }
070: /* auxiliary function for error reporting */
071: private static String yydisplay(int ch)
072: {
073: int i=0, tok_index = 0;
074: int tok_num = 2;
075: String[] tok = new String[tok_num];
076:
077: tok[tok_index++] = "NEWLINE";
078: tok[tok_index++] = "NUMBER";
079:
080: switch (ch)
081: {
082: case 0: return ("[end of file]");
083: case '\b': return ("'\\b'");
084: case '\f': return ("'\\f'");
085: case '\n': return ("'\\n'");
086: case '\r': return ("'\\r'");

75

PCYACC OO TOOLKIT • Printed - December 11, 2000

087: case '\t': return ("'\\t'");
088: case YYERRCODE: return ("[error]");
089: }
090:
091: if(ch > YYERRCODE && ch <= YYERRCODE + tok_num)
092: {
093: return (tok[ch - (YYERRCODE + 1)]);
094: }
095: return "char \""+(char)ch+"\"";
096: }
097:

Lines 066 through 069, the error processing routine, yyerror() is called by
the parser when a syntax error is uncovered during parsing.

Two functions called yydisplay(int) and prompt() are used for this special
example. Function yydisplay(int) will return correspondent content based
on the input token value. Function prompt() is used to invoke prompt line.

098: private static int get_char()
099: {
100: try
101: {
102: return in.read();
103: }
104: catch (IOException e)
105: {
106: System.out.println(e);
107: System.exit(-1);
108: }
109: return 0;
110: }
111:
112: private static void put_char(int c)
113: {
114: try
115: {
116: in.unread(c);
117: }
118: catch (IOException e)
119: {
120: System.out.println(e);
121: System.exit(-1);
122: }
123: }

Lines 098 through 123 contain two auxiliary functions for yylex,

76

PCYACC OO TOOLKIT • Printed - December 11, 2000

get_char() and put_char(int). Their presence is to shorten yylex function’s
length.

124: /* main driver class */
125: class calc_jav
126: {
127: public static void main(String args[])
128: {
129: if (args.length>0)
130: System.out.println("nonmeaningful arguments");
131:
132: pcy_sk myparser = new pcy_sk();
133: myparser.yyparse();
134: }
135: }
136:

Lines 125 through 136 contain user’s own class calc_jav. This class calc_jav
has main function, main(), which is to activate a parser, perform necessary
initialization before activation and clean up after activation.

In general, all action code should be written in Java and you can still use $x
variable to refer to the rule content. Our PCYTOOL will translate $x
variables to the corresponding variables in JavaYacc class. All code in the
user function section except the user-provided class will be put inside a single
Java class whose name is JavaYacc. In order to make your parser runnable,
you have to make sure that all the code you have written will work with
JavaYacc class.

77

PCYACC OO TOOLKIT • Printed - December 11, 2000

X. Delphi Parser and Lexer

1. Introduction

Delphi is a completely object oriented system. It is a viable alternative to C or
C++ developer tools. Delphi’s programming language, ObjectPascal, gives
access to assembler and low-level windows event handling to satisfy any
commercial software application needs. As the PCYACC compiler tool
provider, Abraxas Software is obliged to develop Delphi parser and lexer to
satisfy the current programming needs.

All the code you write in Delphi is stored in units. A unit is a separate file
from your main program file that contains code and that may also contain
variable declarations, constant declarations, objects, and anything else that a
Pascal program can contain. Whenever you create a new form, Delphi
automatically creates a unit just for that form.

Because Delphi creates a unit for each form, units serve to group like
procedures together in one package. Based on this fact, we will create five
basic units as following:

1). DelphiLex Lexical Analyzer Unit: this unit serves as a code skeleton
for PCLEX.

2). DelphiYacc Syntax Parser Unit: this unit supports syntactic parser
PCYACC.

3). DelphiSymbolTable Symbol Table Unit: this unit is used for symbol
table management.

4). DelphiError Error Handling Unit: this unit is responsible for error
reporting.

5). DelphiParseTree Parse Tree Unit: this unit is available when the user
wants to construct parse trees.

78

PCYACC OO TOOLKIT • Printed - December 11, 2000

There are two separate phases for generating a Delphi Parser. The following
diagram shows the phases:

myparser.y

PCYACC

myparser.h myparser.c

PCYTOOL

pcy_sk.dph

 yacc.pas

Figure 10-1. Diagram of Delphi parser generated by
PCYTOOL

 def_yystype.pas

In the first phase, based on the availability of grammar description file,
simply invoke PCYACC tool on the command line to create a C parser. Once
the C parser is generated by PCYACC, a utility program named PCYTOOL
is needed for generating a Delphi parser in the second phase, in which
yacc.pas represents DelphiYacc unit and def_yystype.pas represents the
unit for YYSTYPE in PCYACC.

79

PCYACC OO TOOLKIT • Printed - December 11, 2000

There are two separate phases for generating a Delphi lexer. The following
diagram shows the phases:

 mylexer.l

 PCLEX

 mylexer.c

PCLTOOL

 pcl_sk.dph

 lex.pas

Figure 10-2. Diagram of Delphi lexer generated by
PCLTOOL

In the first phase, based on the availability of a scanner description file,
simply invoke PCLEX tool on the command line to create a C lexer. Once the
C lexer is generated by PCLEX, a utility program named PCLTOOL is
needed for generating a Delphi lexer in the second phase.

2. Delphi Unit Library

Although Delphi is completely object-oriented, it uses unit instead of class in
C++ and Java language. So in order to provide the equivalent functionality,
we will introduce several units to realize the full equivalent functionality of
our C++ and Java class libraries. These units will be used for generating
Delphi parser, lexer and for other auxiliary functionality. Detailed definitions
and member function descriptions will be given for each unit.

a. DelphiLex Unit

The Constant Declaration Part:

Constant declaration part declares constants within the block containing the
declaration.

001: const

80

PCYACC OO TOOLKIT • Printed - December 11, 2000

002: YYERRCODE = 256;
003: YY_END_TOK = 0;
004: YY_NEW_FILE = -1;
005: YY_DO_DEFAULT = -2;
006: BUFSIZ = 4096;
007: F_BUFSIZ = 4096;
008: YY_BUF_SIZE = 8192;
009: YY_BUF_MAX = 8191;
010: YY_MAX_LINE = 4096;
011: YY_BUF_LIM = 4095;
012: YY_NULL = 0;

Delphi language does not support macro definition. However, in a traditional
C lexer generated by PCLEX tool, there are a lot of macros involved, which
provides a lot of convenience to users. The previously listed constants like
F_BUFSIZ, YY_BUF_SIZE, YY_BUF_MAX, YY_MAX_LINE and
YY_BUF_LIM, have been defined based on BUFSIZ with a default value of
4096. For details about how to assign the values of these constants, please
refer to a C lexer source code generated by PCLEX.

The Type Declaration Part:

Programs, procedures, functions, and methods have a type declaration part to
declare types.

013: type
014: charstr = Array[0..YY_BUF_SIZE] of Char;
015: TLex = class(TObject) { lex class }
016: private
017: protected
018: YYlval : yystype;
019: YYval : yystype;
020: yylineno : Integer;
021: filvar:Text;
022: input_file_name:String[64];
023: yy_start:Integer;
024: yy_b_buf_p:Integer;
025: yy_c_buf_p:Integer;
026: yy_e_buf_p:Integer;
027: yy_saw_eof:Integer;
028: yy_init:Integer;
029: yy_ch_buf:charstr;
030: yy_st_buf:Array[0..YY_BUF_SIZE-1] of Integer;
031: yy_hold_char:Char;
032: yytext:Array[0..BUFSIZ-1] of Char;
033: yyErrorCount : Integer;
034: yyErrSrc : String;

81

PCYACC OO TOOLKIT • Printed - December 11, 2000

035: yyleng:Integer;
036: yy_lp:Integer;
037: yy_curst:Integer;
038: reject_flag:Integer;
039: list: Integer;
040: column: Integer;
041: public
042: constructor create;
043: destructor destroy;
044: Procedure set_input_file(name:String);
045: Function yylex:Integer;
046: Function get_yylineno:Integer;
047: Function input:Integer;
048: Procedure unput(c:Char);
049: Procedure YY_DEFAULT_ACTION;
050: Function YY_INPUT(var buf:charstr;
051: index:Integer; max_size:Integer):Integer;
052: Procedure YY_OUTPUT(c:Char);
053: Procedure YY_FATAL_ERROR(s:String);
054: Function yywrap:Boolean;
055: Procedure yyless(n:Integer);
056: Procedure YY_INIT_PROC;
057: Function YY_LENG:Integer;
058: Procedure YY_DO_BEFORE_SCAN;
059: Procedure YY_DO_BEFORE_ACTION;
060: Procedure REJECT(yy_full_match:Integer);
061: Procedure yyerror(s:String; t:String);
062: Procedure errprefix(msg:String);
063: end;

Nearly everything that you will deal with while programming in Delphi is an
object. Although Delphi directly implements the following OOP concepts:
Encapsulation, Inheritance and Polymorphism, Delphi does not support
multiple inheritance and parametric polymorphism, known as overloading.
Multiple inheritance allows a single object inherit traits from two non-related
ancestor classes. Delphi is highly typed. Variable assignments must meet
strict assignment compatibility rules. Due to this strict type assignment
philosophy, overloading was left out of the Delphi language.

In DelphiLex unit, we declare an object type TLex, which uses the class
keyword. This will ensure that your new class will inherit all the properties
and behavior included in the Delphi TObject type. The data fields contain
values pertinent to that object.

The variables declared in data fields of TLex object are originally defined as
globals in a C lexer since all these variables are used for the lexer.

82

PCYACC OO TOOLKIT • Printed - December 11, 2000

Following data fields is procedure and function heading part, which is in the
public section of TLex object. Unless a procedure or function is inline, the
interface part only lists the procedure or function heading.

The Implementation Part:

This part defines the block of all public procedures and functions. Function
declaration defines a block that computes and returns a value, and procedure
declaration associates an identifier with a block as procedure.

constructor TLex.create;
destructor TLex.destroy;

The constructor not only calls the inherited Create method, but also gives
the instance variables the initial state you want them to have. The destructor
calls the inherited Destroy method, which is invoked when an object
disappears.

Procedure TLex.set_input_file(name:String);

Allow the lexer to switch scanning from one input file to another. This
enables scanner to be interrupted to process another input instead of the
current one.

Function TLex.yylex:Integer;

Separate an input character stream into tokens following the patterns
specified in the lex (*.l) file. This function varies for each different lexical
analyzer because the embedded user actions defined in the lex (*.l) file are
different.

Function TLex.get_yylineno:Integer;

This function returns the current line number that is very useful in error
reporting.

Function TLex.input:Integer;

This function returns the next character from input.

Procedure TLex.unput(c:Char);

This procedure puts a character back in the logical input stream.

Procedure TLex.YY_DEFAULT_ACTION;

This procedure is defined as a macro in a C lexer. It will emit information of
yytext buffer to the standard output.

83

PCYACC OO TOOLKIT • Printed - December 11, 2000

Function TLex.YY_INPUT(var buf:charstr; index:Integer;
max_size:Integer):Integer;

This function deals with storage of input stream into a lexer. It gets an input
from the input stream and stores it into a buffer, which the user can specify
as the function call parameter.

Procedure TLex.YY_OUTPUT(c:Char);

This procedure outputs one character to the standard output.

Procedure TLex.YY_FATAL_ERROR(s:String);

This procedure prints out the string specified in as the function call
parameter to the standard error.

Function TLex.yywrap:Boolean;

This function simply returns boolean value true.

Procedure TLex.yyless(n:Integer);

This procedure tells lex to “push back” part of the token that was just read.
The argument to yyless() is the number of token characters to push back
into the input stream.

Procedure TLex.YY_INIT_PROC;

This procedure is used to initialize the scanner’s state.

Function TLex.YY_LENG:Integer;

This function returns the length for the text of the token stored in yytext.

Procedure TLex.YY_DO_BEFORE_SCAN;

This procedure puts the character that the scanner holds at the end of
yytext.

Procedure TLex.YY_DO_BEFORE_ACTION;

This procedure does some preparation job before the scanner takes actions.

Procedure TLex.REJECT(yy_full_match:Integer);

This procedure puts back the text matched by the pattern and finds the next
best match for it.

84

PCYACC OO TOOLKIT • Printed - December 11, 2000

Procedure TLex.yyerror(s:String; t:String);

This procedure simply calls errprefix to finish error reporting by
reformatting the error message display. The two input strings can represent
two different error messages to be displayed.

Procedure TLex.errprefix(msg:String);

This procedure takes a syntax error message as an input and displays it
according to the current token information. The current token information
including the line number, the character position number, …, etc, is provided
by the lexer.

b. DelphiYacc Unit

The Constant Declaration Part:

001: const
002: YYERRCODE = 256;
003: YYMAXDEPTH = 200;
004: YYREDMAX = 1000;
005: PCYYFLAG = -4096;
006: WAS0ERR = 0;
007: WAS1ERR = 1;
008: WAS2ERR = 2;
009: WAS3ERR = 3;

These variables are defined as globals in a C parser. In Delphi, they are
defined as DelphiYacc unit’s constants.

The Type Declaration Part:

010: type
011: valuestack = Array [0..YYMAXDEPTH-1] of yystype;
012: TYacc = class (TLex) { yacc class }
013: private
014: protected
015: yyOutFile : File of Char;
016: yyErrFile : File of Char;
017: yyErrorFlag : Integer;
018: yyToken : Integer;
019: yyValueStack : ^valuestack;
020: redSequence : ^Integer;
021: redCount : Integer;
022: public
023: constructor create;
024: destructor destroy;

85

PCYACC OO TOOLKIT • Printed - December 11, 2000

025: function yyParse: Integer;
026: function get_yyErrorCount : Integer;
027: procedure yyerrok;
028: end;

In DelphiYacc unit, we declare an object type TYacc, which uses the class
keyword. This will ensure that your new class will inherit all the properties
and behavior included in the TLex type. The data fields contain values
pertinent to that object.

The variables declared in the data fields of TYacc object are originally
defined as globals in a C parser since all these variables are used for a parser.

Following data fields is procedure and function heading part, which is in the
public section of TYacc object. Unless a procedure or function is inline, the
interface part only lists the procedure or function heading.

The Implementation Part:

This part defines the block of all public procedures and functions. In which,
function declaration defines a block that computes and returns a value, and
procedure declaration associates an identifier with a block as a procedure.

constructor TYacc.create;
desctructor TYacc.destroy;

The constructor not only calls the inherited Create method, but also gives
the instance variables the initial state you want them to have. The destructor
calls the inherited Destroy method, which is invoked when an object
disappears. Also deallocate memory allocated in the constructor.

function TYacc.yyParse: Integer;

This function is the entry point to a yacc-generated parser. When your
program call the member function yyParse(), the parser attempts to parse
an input stream. The parser returns a value of zero if the parse succeeds and
non-zero if not.

function TYacc.get_yyErrorCount: Integer;

This function simply returns pcyyerrcnt value in case the other unit would
like to access this internal variable of DelphiYacc unit.

procedure TYacc.yyerrok;

This procedure is implemented to replace a macro in a C parser. It tells the
parser to return to the normal state, which can avoid the problem of multiple

86

PCYACC OO TOOLKIT • Printed - December 11, 2000

error messages resulting from a single mistake as the parser gets
resynchronized.

3. Example

Since PCYTOOL will search for yyparse function in user function section of
GDF, so yyparse function appearance in GDF will decide if PCYTOOL is
processing a standalone parser. PCLTOOL will follow the same scenario.
yylex function appearance in SDF will inform PCLTOOL that it is dealing
with a standalone lexer.

If you want to create standalone Delphi parser, please check the CALC
example in our DELPHI SDK package for detail.

If you want to create both Delphi parser and lexer as a single application,
please check out the ODL example in our DELPHI SDK package for detail.

Before you create Delphi parser or lexer, please make sure that every use
function inside GDF or SDF you write will be written in Delphi so that you
can create a runnable Delphi parser or lexer.

Here, we will introduce a simple standalone calculator parser in Delphi to
demonstrate how to use our DelphiYacc unit.

001: %{
002: const
003: QUIT = 101010;
004: STRINGLEN = 1023;
005:
006: %}
007: %union {
008: i: Integer;
009: db: Double;
010: str: String;
011: }
012:
013: %token NUMBER
014: %left '+' '-' /* left associative */
015: %left '*' '/' /* left associative */
016: %left UNARYMINUS /* left associative */
017:

Lines 001 through 013 form the so-called declaration section, where token
symbols, operator precedences, etc., are declared.

Lines 001 through 006 are user declaration section. This section declares
some constants, which will be used in DelphiYacc unit.

87

PCYACC OO TOOLKIT • Printed - December 11, 2000

Lines 007 through 011 define YYSTYPE. PCYTOOL will put the content
of this union declaration into the def_yystype unit since Delphi would not
support a union type.

Line 013 declares one token, which will be used as terminal in the grammar
rule.

Lines 014 through 016 define the associativity of the arithmetic operators
involved. All the operators are declared to be left associative (i.e., if the
statement is a+b+c, the a+b will be calculated first). These statements also
convey the following information: addition (+) and subtraction (-) have the
same precedence; multiplication (*) and division (/) have the same precedence
and it is higher than addition or subtraction; the unary operator, namely the
negation sign, has the highest precedence.

018: %%
019:
020: list: /* nothing */
021: { prompt(); }
022: | list '\n'
023: { prompt(); }
024: | list expr '\n'
025: {
026: If ($2.i = QUIT) Then
027: Begin
028: yyparse := 0;
029: Goto endyyparse;
030: End
031: Else
032: Begin
033: WriteLn(Output, 'Result =====>', $2.db:10:2);
034: prompt();
035: End;
036: }
037: | list error '\n'
038: {
039: yyerrok;
040: prompt();
041: }
042: ;
043: expr: NUMBER { $$.db := $1.db; }
044: | '-' expr %prec UNARYMINUS { $$.db := -$2.db; }
045: | expr '+' expr { $$.db := $1.db + $3.db; }
046: | expr '-' expr { $$.db := $1.db - $3.db; }
047: | expr '*' expr { $$.db := $1.db * $3.db; }
048: | expr '/' expr { $$.db := $1.db / $3.db; }
049: | '(' expr ')' { $$.db := $2.db; }

88

PCYACC OO TOOLKIT • Printed - December 11, 2000

050: ;

Lines 018 through 050 form the grammar rule section, which is the main
body of GDF.

Lines 020 through 042 say that a list can either be empty, be a list followed
by a new line character, be a list followed by an expression and a new line
character, or be a list followed by something, which is an error. Everything
enclosed in braces is called actions. Any function used here except from
DelphiYacc unit’s own member functions has to reside in the user function
section of GDF. The user needs to make sure this usage can be successfully
integrated into yyparse function of DelphiYacc unit.

Lines 043 through 050 contain the rule on how to form expr nonterminal.
Since $x is a variable which will be used for communication with parser, in
these rules the corresponding content associated with every terminal or
nonterminal has been assigned a value.

051: %%
052: (* main driver *)
053: Program calc_pas(Input, Output);
054:
055: Uses yacc;
056: Var
057: myyacc : TYacc;
058: Begin
059: myyacc := TYacc.create;
060: myyacc.yyparse;
061: myyacc.destroy;
062: End. (* end of program calc_pas *)
063:
064: Function TLex.yylex:Integer;
065: (* user's own lexer written in Delphi *)
066: Begin
067: End; (* end of Function yylex *)
068:
069: Procedure TLex.yyerror(s:String);
070: Begin
071: WriteLn(Output, s, ' near line ', yylineno);
072: End; (* end of procedure yyerror *)
073:
074: Procedure prompt;
075: Begin
076: Write(Output, 'READY> ');
077: End; (* end of prompt *)
078:

89

PCYACC OO TOOLKIT • Printed - December 11, 2000

%% on Line 051 is a delimiter that separates the grammar rule section from
the program section. Everything in the program section must be written in
Delphi, and it will be copied to output of PCYACC. Then it will be moved
into DelphiYacc unit body by PCYTOOL except the user provided program
body. This section defines one major Delphi function: yylex and one major
Delphi procedure: yyerror. These functions and procedures are always
required to provide support for the parser.

Program calc_pas is to activate the parser, perform necessary initialization
before activation and to clean up after activation.

The lexical analyzer, yylex() is responsible for decomposing raw text strings
into meaningful lexical units, called tokens, and passing this information to
the parser. Since this example is a standalone Delphi parser, the user has to
write his/her Delphi Lexer to return the token to the syntactic parser.

The error processing routine, yyerror(), is called by the parser when syntax
error is uncovered during parsing.

Procedure prompt() is used to invoke prompt line.

Generally, all the action code should be written in Delphi except that you can
still use $x variable to refer rule content. Our PCYTOOL will translate $x
variables to corresponding variables in DelphiYacc unit. All the code in the
user function section except the user’s own program body will be put inside
DelphiYacc unit. In order to make your parser runnable, you have to make
sure that all the code you have written will work with DelphiYacc unit.

90

PCYACC OO TOOLKIT • Printed - December 11, 2000

XI. VBScript Parser and Lexer

1. Introduction

Microsoft Visual Basic, Scripting Edition, most commonly referred to as
VBScript, is one of the most valuable tools available for Web page
development. VBScript is a subset of the popular Visual Basic development
language. It has been designed to be lightweight, fast, and safe. Because of its
close link to Visual Basic, VBScript can be easily learned by the current
Visual Basic programmers. Also VBScript allows you to add Visual Basic code
directly to HTML document. It is the tool you will use to bring client-side
processing to your web pages and applications. As a major YACC tool
provider, it becomes very important for us to provide tools to generate
VBScript parser and lexer.

VBScript is a text-based, interpreted language that is downloaded to the
browser within the HTML stream. Once at the browser, the VBScript
program is compiled by the VBScript engine within the browser and placed
into memory, where it then waits to be executed. All VBScript code has to be
included between <SCRIPT>, the begin script tag, and </SCRIPT>, the end
script tag.

Code in VBScript is stored in modules. Each module can contain:

• Declarations. You can place constant, type, variable, and dynamic-link
library (DLL) procedure declarations at the module level of form, class or
standard modules.

• Procedures. A Sub, Function, or Property procedure contains pieces of code
that can be executed as a unit.

Modules (.bas file name extension) are containers for procedures and
declarations commonly accessed by other modules within the application.
They can contain global (available to the whole application) or module-level
declarations of variables, constants, types, external procedures, and global
procedures.

91

PCYACC OO TOOLKIT • Printed - December 11, 2000

There are two separate phases for generating a VBScript Parser. The
following diagram shows the phase:

myparser.y

PCYACC

myparser.h myparser.c

PCYTOOL

pcy_sk.vbs

Figure 11-1. Diagram of VBScript parser generated
by PCYTOOL

 myparser.bas

In the first phase, based on the availability of a grammar description file,
simply invoke PCYACC tool on the command line to create a C parser. Once
the C parser is generated by PCYACC, a utility program named PCYTOOL
is needed for generating a VBScript parser in the second phase, in which
myparser.bas is final VBScript parser.

92

PCYACC OO TOOLKIT • Printed - December 11, 2000

There are two separate phases for generating a VBScript Lexer. The
following diagram shows the phase:

 mylexer.l

 PCLEX

 mylexer.c

PCLTOOL

 pcl_sk.vbs

 lex.bas

Figure 11-2. Diagram of VBScript lexer generated
by PCLTOOL

In the first phase, based on the availability of a scanner description file,
simply invoke PCLEX tool on the command line to create a C lexer. Once the
C lexer is generated by PCLEX, a utility program named PCLTOOL is
needed for generating a VBScript lexer in the second phase.

2. Structure of VBScript Parser and Lexer

Since all the VBScript code will be put between <SCRIPT>, the begin tag,
and </SCRIPT>, the end tag, we have to integrate parser and lexer files into
one single VBScript file. All the procedures are identical to their counterparts
of the C parser and lexer. The macros in C parser and lexer will be translated
into the corresponding VBScript procedures.

93

PCYACC OO TOOLKIT • Printed - December 11, 2000

The VBScript code of a lexical analyzer generated by PCLTOOL has the
following layout,

1. Code from the section 1 of .l file

2. Data tables

3. Module-level variables

4. Auxilary procedures

5. Function yylex()

6. Code from the section 3 of .l

Figure 11-3. Structure of VBScript Code Generated
by PCLTOOL

1). Code segment copied directly from the declaration section of lexer file:
This part contains the declarations of variables and functions to be used in
embedded actions. It varies with different lexical analyzers and it is optional.
The code in this section should be written in VBScript language.

2). Data tables: This part consists of the data tables for driving the
Deterministic Finite Automaton (DFA) simulator. They are different for
different lexical analyzers.

3). Module-level variables: This part consists of the variables representing
the input stream buffer and pointers that indicate the status of the input
being scanned. They should be almost the same for different lexical
analyzers.

4). Auxiliary procedures: This part defines the procedures that are called by
the lexer function yylex().

5). Function yylex(): This part defines the function yylex().

6). Code segment copied directly from the function section of the lexer file:
This part contains the possible function definitions by the user. It is also
optional. The User is responsible for writing the valid VBScript code.

94

PCYACC OO TOOLKIT • Printed - December 11, 2000

The layout of generated VBScript YACC code is shown below.

Code copied directly from the section 1 of .y file (if there is any)

Code copied directly from the section 3 of .y file (if there is any)

Constants representing tokens

Data tables

Auxiliary Yacc procedures

Function yyparse()

Figure 11-4 Layout of Generated VBScript YACC code

1). Code copied directly from the section 1 of .y file: This part contains the
declarations of variables and functions to be used in embedded actions. It
varies with different parsers and it is optional. The code in this section
should be written in VBScript language.

2). Data tables: This part consists of the parsing tables for driving yacc
machine. They are different for different syntax analyzers.

3). Constants representing tokens: This part consists of all tokens defined in
grammar file.

4). Code copied directly from the section 3 of .y file: This part contains the
possible function definitions by user. It is also optional. User is responsible
for writing valid VBScript code.

5). Auxiliary yacc procedures: This part defines the procedures that are called
by yyparse function.

6). Function yyparse(): This part contains yyparse() function definition.

a. VBScript Lex Modules

All the auxiliary procedures related to lexer are listed below:

Sub YY_DO_BEFORE_ACTION()

This procedure does some preparation job before scanner takes actions.

Sub YY_DEFAULT_ACTION()

95

PCYACC OO TOOLKIT • Printed - December 11, 2000

This procedure is defined as a macro in a C lexer. It will emit information of
yytext buffer to the output the user defined.

Sub YY_DO_BEFORE_SCAN()

This procedure puts the character that the scanner holds at the end of
yytext.

 Function yywrap

This procedure simply returns 1.

Sub YY_FATAL_ERROR(s)

This procedure prints out the string specified in as the function call
parameter to the output the user defines.

Sub YY_INIT_PROC()

This procedure is used to initialize the scanner’s state.

Function YY_INPUT(buf, index, maxsize)

This procedure deals with storage of an input stream into a lexer. It gets an
input from the input stream and stores it into a buffer, which the user can
specify as the function call parameter.

Sub YY_OUTPUT(c)

This procedure outputs one character to the output the user defines.

Function input()

This procedure returns the next character from the input stream.

Sub unput(c)

This procedure puts a character back to the logical input stream. The user
can call several times in a row to put several characters back into the input
stream.

Function yylex()

This procedure is used to start or resume scanning. It separates an input
character stream into tokens following the patterns specified in lex (*.l) file.

96

PCYACC OO TOOLKIT • Printed - December 11, 2000

b. VBScript Yacc Modules

All the auxiliary procedures related to a parser are listed below:

Sub yyerrok()

This procedure is implemented to replace a macro in C parser. It tells the
parser to return to the normal state, which can avoid the problem of multiple
error messages resulting from a single mistake as the parser gets
resynchronized.

Function yyparse()

This procedure is the entry point to a yacc-generated parser. When your
program calls the member function yyparse(), the parser attempts to parse
an input stream. The parser returns a value of zero if the parse succeeds and
non-zero if not.

c. VBScript Error Report Modules

All the auxiliary procedures related to error reporting are listed below:

Sub set_input_file_name(fname)

This procedure is used to set pcyyerrsrc so that error report could show
which input source file the parser is processing.

Sub errprefix(msg)

This procedure takes a syntax error message as an input and displays it
according to the current token information. The current token information
including the line number, the character position number, etc, is provided by
the lexer.

Sub yyerror(s, t)

This procedure simply calls errprefix to finish error reporting by
reformatting the error message display. The two input strings can represent
two different error messages to be displayed.

Function yydisplay(token)

This procedure displays token context based on the input token value.
Normally, this function is provided by the user.

Sub yyskiptoken()

97

PCYACC OO TOOLKIT • Printed - December 11, 2000

This procedure makes file indicator forward one unit to skip the current
token as if the current token being processed by the lexer does not exist in the
input stream.

Sub yyskipsymbol()

This procedure simply skips the current symbol in the sentential form if it is
a terminal and keeps the current token unchanged.

Sub yyreplacetoken(token)

This procedure takes a replacing token as an input and replaces the token
that will be processed by the lexer.

Function yymatchtoken(token)

This procedure takes a matching token as an input parameter. It will return
1 if the current token matched the actual input token value, otherwise
returns 0 instead.

Sub yyinserttoken(token)

This procedure takes a token to be inserted as an input parameter. Its
purpose is to insert a token in front of the one that will be processed by the
lexer.

3. Example

HTML allows the user to include a script directly by using the HTML
comment tags around the user’s VBScript code. One comment tag is placed
after the <SCRIPT> tag and the other before the </SCRIPT> tag. The initial
<SCRIPT> tag must include the LANGUAGE property identifies the
scripting language that the browser should use to interpret the code.

001: <SCRIPT LANGUAGE = “VBSCRIPT”>
002: <!—-
003: •
004: •
005: •
006: -->
007: </SCRIPT>

Since our PCYTOOL and PCLTOOL are not language translators,
everything involving the user defines has to be written in the VBScript
language. In order to make it easier for the customer to get information from
or to a parser, the customer can still use $x variable to refer to the parser
internal information. However, there will be restrictions on the GDF and

98

PCYACC OO TOOLKIT • Printed - December 11, 2000

SDF files. To generate a runnable VBScript parser, the specific procedures
have to be followed.

Here, we will introduce one example that can illustrate how to write a
corresponding grammar description file and scanner description file in order
to get a VBScript parser and lexer generated by our PCYTOOL and
PCLTOOL.

The following is a SDF for a Simple Calculator, which exhibits the typical
structure of a scanner description file used to generate a VBScript lexer by
PCLTOOL. For reference, line numbers are added to the listing.

Lines 001 through 014 form the definition section, where needed global
variables and several regular expression macros are declared. Lines 008
through 013 define several regular expression macros. Lines 017 through
064 make up the rule section where the input patterns to match and their
corresponding actions are defined. Lines 067 through 190 are the user
function section with the necessary support functions written in VBScript.

001:
002: %{' declare variables for error reporting
003: Dim yyerror_column, yyerror_list
004: Dim yyerror_msg ' String type
005: Dim lex_index
006: %}
007:
008: letter [a-zA-Z_]
009: alphanum [a-zA-Z_0-9]
010: digit [0-9]
011: blank [\t]
012: sign [+-*/]
013: other .
014:

Lines 003 through 005 define some global variables, which are necessary
for error reporting.

Lines 008 through 013 define several regular expression macros. Macro
names are substitutions of the corresponding pattern. The patterns can be
referred in the rule section with the macro names in braces, for example,
“{letter}”.

015: %%

The “%%” delimiter standing alone on line 015 separates the definition
section from the rule section.

99

PCYACC OO TOOLKIT • Printed - December 11, 2000

The rule section spans from lines 017 through 064. In this section, the user
has to assign yytext content to yylval, which is a variable shared between
the parser and lexer.

016: /* assign yytext content to yylval in each rule */
017: {letter}{alphanum}* {
018: For lex_index=0 To UBound(yytext)
019: yylval(lex_index) =

yytext(lex_index)
020: Next
021: yylex = yysearch(yytext)
022: Exit Function
023: }

The pattern on lines 017 through 023 matches both identifiers and
keywords. The function yysearch(yytext) defined in the user function
section determines which one it is.

024: {digit}+ {
025: For lex_index=0 To UBound(yytext)
026: yylval(lex_index) =

yytext(lex_index)
027: Next
028: yylex = NUMBER
029: Exit Function
030: }
031:
032: {digit}+\.{digit}* {
033: For lex_index=0 To UBound(yytext)
034: yylval(lex_index) =

yytext(lex_index)
035: Next
036: yylex = NUMBER
037: Exit Function
038: }
039:
040: \.{digit}+ {
041: For lex_index=0 To UBound(yytext)
042: yylval(lex_index) =

yytext(lex_index)
043: Next
044: yylex = NUMBER
045: Exit Function
046: }
047:

The three rules above on lines 024 through 046 handles numeric

100

PCYACC OO TOOLKIT • Printed - December 11, 2000

constants. All integers and floating point numbers are returned as
NUMBER.

048: sign {
049: yylex = yytext(0)
050: Exit Function
051: }
052:

The pattern on lines 048 through 051 handles signed character.

053: \n {
054: yylineno = yylineno + 1
055: yylex = Asc("\n")
056: Exit Function
057: }
058:

Lines 053 through 057 say when an end of line is reached (‘\n’ is shorthand
for new line), add one to the line counter (yylineno).

059: {blank}+ ;
060:

Line 059 handles white spaces. The scanner discards blanks and tabs.

061: {other} {
062: yylex = yytext(0)
063: Exit Function
064: }

Lines 061 through 064 handle the situation other than those discussed
above.

065: %%

The “%%” delimiter standing alone on line 065 separates the rule section
from the user function section.

The user function section spans lines 067 through 190.

066: ' decide whether a token is an identifier or a reserved
keyword

067: Function yysearch(arr) ' arr is Array type
068: Dim i, tmp_str
069: tmp_str = ""
070: For i=0 To UBound(arr)
071: If (arr(i)=0) Then

101

PCYACC OO TOOLKIT • Printed - December 11, 2000

072: If (tmp_str="SQRT") Then
073: yysearch = SQRT ' SQRT token
074: Else
075: yysearch = IDENTIFIER ' IDENTIFIER token
076: End If
077: Exit Function
078: End If
079: tmp_str = tmp_str & String(1, Chr(arr(i)))
080: Next
081: End Function

The function yysearch(), determines whether a name is an identifier or a
reserved keyword. Other functions in this section are the error reporting
routines for this Simple Calculator.

082: ' translate the content in an array variable into a
corresponding string variable

083: Function array_to_string(arr) ' arr is array type
084: Dim i, temp_str
085: temp_str = ""
086: For i=0 To UBound(arr)
087: If (arr(i)=0) Then
088: array_to_string = temp_str
089: Exit Function
090: End If
091: If (Asc(String(i+1, Chr(arr(i))))=10) Then
092: temp_str = temp_str & "\n"
093: Else
094: temp_str = temp_str & String(i+1, Chr(arr(i)))
095: End If
096: Next
097: array_to_string = temp_str
098: End Function

Function array_to_string() spans from lines 083 through 098, which will
translate the content in an array variable into a corresponding string
variable. It is not necessary if the function for this kind of data conversion is
available in the future improved VBScript language.

The error reporting functions are independent of the lexical scanner defined
above. They are for the parser part and could be put into another file or the
program part of the grammar description file. The reason for putting them
here is for better discussion. Furthermore, usually a grammar description file
is considerably bigger than the scanner description file and requires more
computer memory for compilation.

099: ' provide line number and error count number for error

102

PCYACC OO TOOLKIT • Printed - December 11, 2000

report
100: Sub errprefix(msg) 'msg must be string type
101: Dim punct
102:
103: punct = 1
104: yyerror_msg = yyerror_msg & "[error " &

Chr(Asc(pcyyerrcnt+1)) & "] "
105:
106: If (yylineno>=0) Then
107: If (punct<>0) Then
108: yyerror_msg = yyerror_msg & ", "
109: End If
110: yyerror_msg = yyerror_msg & "line " &

Chr(Asc(yylineno))
111: punct = 1
112: End If
113:
114: If (yytext(0)<>0) Then
115: If (punct<>0) Then
116: yyerror_msg = yyerror_msg & " "
117: End If
118: yyerror_msg = yyerror_msg & "near '" &

array_to_string(yytext) & "'"
119: punct = 1
120: End If
121:
122: If (punct<>0) Then
123: yyerror_msg = yyerror_msg & ": "
124: End If
125: yyerror_msg = yyerror_msg & msg & Chr(13) & Chr(10)
126: End Sub

An auxiliary sub, errprefix() spanning from lines 100 through 126, is
called by yyerror() to report the location of the error occurred and the
current error number.

127: ' display token context
128: Function yydisplay(token) ' must return a string
129:
130: If (token>=0 And token<=255) Then
131: yydisplay = "'" & Chr(token) & "'"
132: Else
133: yydisplay = "char " & token
134: End If
135: Exit Function
136:
137: End Function

103

PCYACC OO TOOLKIT • Printed - December 11, 2000

138:

An auxiliary sub, yydisplay(token) spanning from lines 128 through 137,
is used to display token context based on an input token value. Normally, this
function is provided by the user.

139: ' display error message, s and t must be string type
140: Sub yyerror(ByVal s, ByVal t)
141: Dim expecting
142: expecting = "expecting: "
143:
144: yyerror_column = 0
145:
146: If (Len(s)<>0) Then
147: If (yyerror_column<>0) Then
148: yyerror_msg = yyerror_msg & ""
149: End If
150: errprefix(s)
151:
152: If (Len(t)=0) Then
153: yyerror_column = 0
154: Else
155: yyerror_msg = yyerror_msg & "actual: " & t
156: yyerror_column = 8 + Len(t)
157: End If
158: yyerror_list = 0
159: Else
160: If (Len(t)<>0) Then
161: If (yyerror_list=0) Then
162: If ((yyerror_column + Len(t) +

Len(expecting) + 1) < 78) Then
163: yyerror_msg = yyerror_msg & " " &

expecting & t
164: yyerror_column = yyerror_column +

Len(expecting) +
Len(t) + 1

165: Else
166: yyerror_msg = yyerror_msg &

Chr(13) & Chr(10)
167: yyerror_msg = yyerror_msg &

expecting & t
168: yyerror_column = Len(expecting) +

Len(t) - 1
169: End If
170: Else
171: If (yyerror_column + Len(t) < 78) Then
172: yyerror_msg = yyerror_msg & ", " & t

104

PCYACC OO TOOLKIT • Printed - December 11, 2000

173: yyerror_column = yyerror_column +
Len(t) + 2

174: Else
175: yyerror_msg = yyerror_msg & "," &

Chr(13) & Chr(10)
176: yyerror_msg = yyerror_msg&" "&t
177: yyerror_column = 4 + Len(t)
178: End If
179: End If
180: yyerror_list = yyerror_list + 1
181: Else
182: yyerror_msg = yyerror_msg & Chr(13) & Chr(10)
183: yyerror_column = 0
184: yyerror_list = 0
185: End If
186: End If
187: End Sub
188:
189:
190:

The error reporting sub, yyerror() spanning from lines 140 through 190, is
the standard PCYACC error routine. yyparse() will call yyerror()
whenever it detects a syntax error. The lexical scanner could also use the
same routine to report any lexical error occurred in the input source file.

The following is the listing of the PCYACC GDF for the Simple Calculator
example. For reference, line numbers are added to the statements (line
numbers should NOT be included in the user’s GDF).

001: %{
002: Dim result
003: Dim index, tmp(8191), tmp1(8191), tmp2(8191), num
004: %}
005:
006: %token NUMBER
007: %token IDENTIFIER
008: %token SQRT
009: %token Shift
010:
011: %left '-' '+'
012: %left '*' '/'
013: %left '(' ')'
014: %left '='
015: %left Shift
016: %nonassoc UMINUS
017:

105

PCYACC OO TOOLKIT • Printed - December 11, 2000

Lines 001 through 016 form the so-called declaration section, where token
symbols, operator precedences, etc, are declared.

Lines 001 through 004 are the user declaration section, where some global
variables used by the user actions are declared.

Lines 006 through 009 declare several tokens, which cannot be used as the
left-hand side of grammar rules.

Lines 011 through 016 define the associativity of the arithmetic operators
involved. All the operators are declared to be left associative (i.e., if the
statement is a+b+c, the a+b will be calculated first). These statements also
convey the following information: addition (+) and subtraction (-) have the
same precedence; multiplication (*) and division (/) have the same precedence
and it is higher than addition or subtraction; the unary operator, namely the
negation sign, has the highest precedence.

018: %start list
019:
020: %%

start on line 018 defines a start symbol. Rules with the start symbol on the
LHS are called start rules.

The delimiter %% on line 020 marks the beginning of the rule section.

Lines 022 through 133 form the grammar rule section, which is the main
body of a GDF.

021:
022: list
023: : expression
024: {
025: For index=0 To UBound($$)
026: tmp1(index) = $1(index)
027: Next
028: result = array_to_double(tmp1)
029: }
030: ;
031:

Lines 022 through 030 say that a list can be an expression. Everything
enclosed in braces is called actions. Any function used here except from
VBScript skeleton file has to be provided by the user themselves, which will
reside in the user function section of a GDF.

Lines 032 through 133 contains the rules on how to form expression

106

PCYACC OO TOOLKIT • Printed - December 11, 2000

nonterminal. Since $x is a variable which will communicate with the parser,
in these rules the corresponding content associated with every terminal or
nonterminal has to be assigned a value. Based on the fact that the
information residing $$ and $x variables is stored in an array and VBScript
language does not support structure and union like C language, in the user
action, we have to use the different data conversion functions to translate
data between the different data types. This could make the user action code
look more complicated.

032: expression
033: : expression '+' expression
034: {
035: For index=0 To UBound($$)
036: tmp1(index) = $1(index)
037: Next
038: For index=0 To UBound($$)
039: tmp2(index) = $3(index)
040: Next
041: For index=0 To UBound($$)
042: If (Len(CStr(array_to_double(tmp1) +

array_to_double(tmp2))) > index) Then
043: $$(index)=Asc(Mid(CStr(array_to_double(tmp1)

+ array_to_double(tmp2)), index+1, 1))
044: Else
045: $$(index) = 0
046: Exit For
047: End If
048: Next
049: }

Lines 033 through 049 state that an expression can be an expression ‘+’ an
expression. The user action inside this rule will add values of $1 and $3, then
assign the result to the LHS nonterminal – expression.

050: | '(' expression ')'
051: {
052: For index=0 To UBound($$)
053: $$(index) = $2(index)
054: Next
055: }

Lines 050 through 055 state that an expression can be ‘(‘, followed by an
expression, followed by ‘)’. The user action inside this rule will assign the
value of $2 to the LHS nonterminal – expression.

056: | expression '-' expression
057: {

107

PCYACC OO TOOLKIT • Printed - December 11, 2000

058: For index=0 To UBound($$)
059: tmp1(index) = $1(index)
060: Next
061: For index=0 To UBound($$)
062: tmp2(index) = $3(index)
063: Next
064: For index=0 To UBound($$)
065: If (Len(CStr(array_to_double(tmp1) -

array_to_double(tmp2))) > index) Then
066: $$(index)=Asc(Mid(CStr(array_to_double(tmp1)

- array_to_double(tmp2)),index+1,1))
067: Else
068: $$(index) = 0
069: Exit For
070: End If
071: Next
072: }

Lines 056 through 072 state that an expression can be an expression ‘-’ an
expression. The user action inside this rule will subtract $3 value from $1
value, then assign the result to the LHS nonterminal – expression.

073: | expression '*' expression
074: {
075: For index=0 To UBound($$)
076: tmp1(index) = $1(index)
077: Next
078: For index=0 To UBound($$)
079: tmp2(index) = $3(index)
080: Next
081: For index=0 To UBound($$)
082: If (Len(CStr(array_to_double(tmp1) *

array_to_double(tmp2))) > index) Then
083: $$(index)=Asc(Mid(CStr(array_to_double(tmp1)

*array_to_double(tmp2),index+1,1))
084: Else
085: $$(index) = 0
086: Exit For
087: End If
088: Next
089: }

Lines 073 through 089 state that an expression can be an expression ‘*’ an
expression. The user action inside this rule will multiply the values of $1 and
$3, then assign the result to the LHS nonterminal – expression.

090: | expression '/' expression

108

PCYACC OO TOOLKIT • Printed - December 11, 2000

091: {
092: For index=0 To UBound($$)
093: tmp1(index) = $1(index)
094: Next
095: For index=0 To UBound($$)
096: tmp2(index) = $3(index)
097: Next
098:
099: If (array_to_double(tmp2)=0) Then
100: Call yyerror("divided by zero", "");
101: Else
102: num = array_to_double(tmp1) /

array_to_double(tmp2)
103: For index=0 To UBound($$)
104: If (Len(CStr(num))>index) Then
105: $$(index) = Asc(Mid(CStr(num),

index+1, 1))
106: Else
107: $$(index) = 0
108: Exit For
109: End If
110: Next
111: End If
112: }

Lines 090 through 112 state that an expression can be an expression ‘/’ an
expression. The user action inside this rule will divide the values of $1 by the
value of $3, then assign the result to the LHS nonterminal – expression.

113: | '-' expression %prec UMINUS
114: {
115: For index=0 To UBound($$)
116: tmp1(index) = $2(index)
117: Next
118: For index=0 To UBound($$)
119: If (Len(CStr(array_to_double(tmp1) *

(-1))) > index) Then
120: $$(index)=Asc(Mid(CStr(array_to_double(tmp1)

*(-1)),index+1,1))
121: Else
122: $$(index) = 0
123: Exit For
124: End If
125: Next
126: }

Lines 113 through 126 state that an expression can be negation of an

109

PCYACC OO TOOLKIT • Printed - December 11, 2000

expression. The user action inside this rule will negate the value of $2, then
assign the result to the LHS nonterminal – expression.

127: | NUMBER
128: {
129: For index=0 To UBound($$)
130: $$(index) = $1(index)
131: Next
132: }
133: ;
134:

Lines 127 through 134 state that an expression can be a NUMBER. The
user action inside this rule will assign $1 value to the LHS nonterminal –
expression.

135: %%

The %% on line 135 is delimiter separates the grammar rule section from the
program section. Everything in the program section must be written in
VBScript, and it will be copied to the output of PCYACC. Then it will be
moved into the VBScript parser by PCYTOOL.

Lines 136 through 219 define several auxiliary procedures used to convert
data from different data types and provide the user interface for input
stream.

136: ' main driver module
137: Sub ParseFile_OnClick()
138: str = CStr(InputString.Value)
139:
140: yyparse
141: If (pcyyerrcnt=0) Then
142: MsgBox "RESULT ========> " & CStr(result) &

Chr(10) & "There is no syntax error",
0, "Parsing Result"

143: Else
144: MsgBox yyerror_msg, 0, "PCYACC Error Message"
145: End If
146: End Sub

Lines 136 through 146 define an auxiliary procedure, which is used to
invoke parser through function call yyparse. After parsing process is over,
the result will be displayed in a message box.

147: ' translate an array to an integer
148: Function array_to_integer(arr) ' return a integer,

110

PCYACC OO TOOLKIT • Printed - December 11, 2000

arr is Array type with ASCII code element
149: Dim i
150: array_to_integer = 0
151: For i=0 To UBound(arr)
152: If (arr(i)=0) Then
153: Exit Function
154: End If
155: If (arr(i)>=Asc("0") And arr(i)<=Asc("9")) Then
156: array_to_integer = (arr(i) - Asc("0")) +

array_to_integer * 10
157: End If
158: Next
159: End Function

Lines 147 through 159 define an auxiliary procedure, which translate an
array to an integer. This procedure is very important for retrieving
information from VBScript lexer and parser since yylval or yyval variable is
an array type.

160: ' translate an array to a double
161: Function array_to_double(arr) ' return a double, arr

is Array type with ASCII code element
162: Dim i, j, tmp, k, E_flag, sign_flag, e_value
163: E_flag = 0
164: sign_flag = 1 ' default to positive
165: e_value = 0
166:
167: j = 0
168: array_to_double = 0
169: For i=0 To UBound(arr)
170: tmp = 1
171: If (arr(i)=0) Then
172: Exit For
173: End If
174: If ((arr(i)>=Asc("0") And arr(i)<=Asc("9"))

Or arr(i)=Asc(".") or arr(i)=Asc("E") or
arr(i)=Asc("+") or arr(i)=Asc("-")) Then

175: If (arr(i)>=Asc("0") And
arr(i)<=Asc("9") And E_flag=0) Then

176: If (j>0) Then
177: j = j + 1
178: For k=1 to j-1
179: tmp = 10 * tmp
180: Next
181:
182: array_to_double = (arr(i)-Asc("0")) /

tmp + array_to_double

111

PCYACC OO TOOLKIT • Printed - December 11, 2000

183: Else
184: array_to_double = (arr(i)-Asc("0")) +

array_to_double * 10
185: End If
186: End If
187: If (arr(i)>=Asc("0") And

arr(i)<=Asc("9") And E_flag=1) Then
188: e_value = e_value * 10 + arr(i)-Asc("0")
189: End If
190: If (arr(i)=Asc(".")) Then
191: j = 1
192: End If
193: If (arr(i)=Asc("E")) Then
194: E_flag = 1
195: End If
196: If (arr(i)=Asc("+")) Then
197: sign_flag = 1 ' positive
198: End If
199: If (arr(i)=Asc("-")) Then
200: sign_flag = 2 ' negative
201: End If
202: End If
203: Next
204:
205: ' handle Scientific Expression
206: If (E_flag=1) Then
207: tmp = 1
208: For k=1 to e_value
209: tmp = tmp * 10
210: Next
211: If (sign_flag=1) Then ' positive
212: array_to_double = array_to_double * tmp
213: Else
214: array_to_double = array_to_double / tmp
215: End If
216: End If
217:
218: End Function
219:

Lines 160 through 219 define an auxiliary procedure, which translate an
array to a double. This procedure adds some statements to handle scientific
number expression, Abraxas Software highly encourages the user to
improve this part.

Generally, all the action code should be written in VBScript except that you
can still use $x variable to refer the rule content. Our PCYTOOL will

112

PCYACC OO TOOLKIT • Printed - December 11, 2000

translate $x variables to the corresponding variables in VBScript. All the
code in the user function section will be put inside the VBScript parser. In
order to make your parser runnable, you have to make sure that all the code
you have written will work with the VBScript parser created by our
PCYTOOL.

113

PCYACC OO TOOLKIT • Printed - December 11, 2000

XII. Pascal Parser and Lexer

1. Introduction

Pascal is a general-purpose, high level programming language. It is
established as one of the foremost high-level languages; whether the
application is education or professional programming.

There are two separate phases in generating a Pascal Parser. The following
diagram shows the phases:

myparser.y

PCYACC

myparser.h myparser.c

PCYTOOL

pcy_sk.pas

Figure 12-1. Diagram of Pascal parser generated by
PCYTOOL

 myparser.pas

In the first phase, based on the availability of a grammar description file,
simply invoke PCYACC tool on the command line to create a C parser. Once
the C parser is generated by PCYACC, a utility program named PCYTOOL
is needed for generating a Pascal parser in the second phase, in which
myparser.pas represents a Pascal parser generated by PCYTOOL.

114

PCYACC OO TOOLKIT • Printed - December 11, 2000

There are two separate phases for generating a Pascal lexer. The following
diagram shows the phases:

 mylexer.l

 PCLEX

 mylexer.c

PCLTOOL

 pcl_sk.pas

 mylexer.pas

Figure 12-2. Diagram of Pascal lexer generated by
PCLTOOL

In the first phase, based on the availability of a scanner description file,
simply invoke PCLEX tool on the command line to create a C lexer. Once the
C lexer is generated by PCLEX, a utility program named PCLTOOL is
needed for generating a Pascal lexer in the second phase.

2. Pascal Library

a. Pascal Lexer

The Constant Declaration Part:

Constant declaration part declares constants within the block containing the
declaration.

001: const
002: YYERRCODE = 256;
003: YY_END_TOK = 0;
004: YY_NEW_FILE = -1;
005: YY_DO_DEFAULT = -2;
006: BUFSIZ = 4096;
007: F_BUFSIZ = 4096;
008: YY_BUF_SIZE = 8192;

115

PCYACC OO TOOLKIT • Printed - December 11, 2000

009: YY_BUF_MAX = 8191;
010: YY_MAX_LINE = 4096;
011: YY_BUF_LIM = 4095;
012: YY_NULL = 0;

Pascal language does not support macro definition. However, in a traditional
C lexer generated by PCLEX tool, there are a lot of macros involved, which
provides a lot of convenience to the users. The previously listed constants like
F_BUFSIZ, YY_BUF_SIZE, YY_BUF_MAX, YY_MAX_LINE and
YY_BUF_LIM, have been defined based on BUFSIZ with a default value of
4096. For details about how to assign the values of these constants, please
refer to a C lexer source code generated by PCLEX.

The Type Declaration Part:

Programs, procedures, functions, and methods have a type declaration part to
declare types.

013: type
014: charstr = Array[0..YY_BUF_SIZE] of Char;

The Var Declaration Part:

Every variable occurring in a program must be declared before use. The
declaration must textually precede any use of the variable. A variable
declaration part consists of the reserved word var followed by one or more
identifier(s), separated by commas, each followed by a colon and a type.

015:
016:
017: var
018: YYlval : yystype;
019: YYval : yystype;
020: yylineno : Integer;
021: filvar:Text;
022: input_file_name:String[64];
023: yy_start:Integer;
024: yy_b_buf_p:Integer;
025: yy_c_buf_p:Integer;
026: yy_e_buf_p:Integer;
027: yy_saw_eof:Integer;
028: yy_init:Integer;
029: yy_ch_buf:charstr;
030: yy_st_buf:Array[0..YY_BUF_SIZE-1] of Integer;
031: yy_hold_char:Char;
032: yytext:Array[0..BUFSIZ-1] of Char;
033: yyErrorCount : Integer;

116

PCYACC OO TOOLKIT • Printed - December 11, 2000

034: yyErrSrc : String;
035: yyleng:Integer;
036: yy_lp:Integer;
037: yy_curst:Integer;
038: reject_flag:Integer;
039: list: Integer;
040: column: Integer;

Pascal is highly typed language. Variable assignments must meet strict
assignment compatibility rules.

The variables declared in var declaration part are originally defined as
globals in a C lexer since all these variables are used for the lexer.

The Implementation Part:

set_input_file(name:String);

Allow the lexer to switch scanning from one input file to another. This
enables a scanner to be interrupted to process another input instead of the
current one.

yylex:Integer;

Separate an input character stream into tokens following the patterns
specified in the lex (*.l) file. This function varies for each different lexical
analyzer because the embedded user actions defined in the lex (*.l) file are
different.

get_yylineno:Integer;

This function returns the current line number that is very useful in error
reporting.

input:Integer;

This function returns the next character from an input.

unput(c:Char);

This procedure puts a character back in the logical input stream.

YY_DEFAULT_ACTION;

This procedure is defined as a macro in a C lexer. It will emit information of
yytext buffer to the standard output.

YY_INPUT(var buf:charstr; index:Integer;

117

PCYACC OO TOOLKIT • Printed - December 11, 2000

max_size:Integer):Integer;

This function deals with the storage of an input stream into a lexer. It gets an
input from the input stream and stores it into a buffer, which the user can
specify as the function call parameter.

YY_OUTPUT(c:Char);

This procedure outputs one character to the standard output.

YY_FATAL_ERROR(s:String);

This procedure prints out the string specified in as the function call
parameter to the standard error.

yywrap:Boolean;

This function simply returns boolean value true.

yyless(n:Integer);

This procedure tells lex to “push back” part of the token that was just read.
The argument to yyless() is the number of token characters to push back
into the input stream.

YY_INIT_PROC;

This procedure is used to initialize the scanner’s state.

YY_LENG:Integer;

This function returns the length for the text of the token stored in yytext.

YY_DO_BEFORE_SCAN;

This procedure puts the character that the scanner holds at the end of
yytext.

YY_DO_BEFORE_ACTION;

This procedure does some preparation job before the scanner takes actions.

REJECT(yy_full_match:Integer);

This procedure puts back the text matched by the pattern and finds the next
best match for it.

yyerror(s:String; t:String);

118

PCYACC OO TOOLKIT • Printed - December 11, 2000

This procedure simply calls errprefix to finish error reporting by
reformatting the error message display. The two input strings can represent
two different error messages to be displayed.

errprefix(msg:String);

This procedure takes a syntax error message as an input and displays it
according to the current token information. The current token information
including the line number, the character position number, etc, is provided by
the lexer.

b. Pascal Parser

The Constant Declaration Part:

001: const
002: YYERRCODE = 256;
003: YYMAXDEPTH = 200;
004: YYREDMAX = 1000;
005: PCYYFLAG = -4096;
006: WAS0ERR = 0;
007: WAS1ERR = 1;
008: WAS2ERR = 2;
009: WAS3ERR = 3;

These variables are defined as globals in a C parser. In Pascal, they are
defined as constants.

The Type Declaration Part:

010: type
011: valuestack = Array [0..YYMAXDEPTH-1] of yystype;

The reserved word type heads the type declaration part, and it is followed by
one or more type assignments separated by semicolons. Each type
assignment consists of a type identifier followed by an equal sign and a type.
Here, we define a valuestack type.

The Var Declaration Part:

012:
013:
014: var
015: yyOutFile : File of Char;
016: yyErrFile : File of Char;
017: yyErrorFlag : Integer;
018: yyToken : Integer;

119

PCYACC OO TOOLKIT • Printed - December 11, 2000

019: yyValueStack : ^valuestack;
020: redSequence : ^Integer;
021: redCount : Integer;

The variables declared in var declaration part are originally defined as
globals in a C parser since all these variables are used for the parser.

The Implementation Part:

yyParse: Integer;

This function is the entry point to a yacc-generated parser. When your
program call function yyParse(), the parser attempts to parse an input
stream. The parser returns a value of zero if the parse succeeds and non-zero
if not.

yyerrok;

This procedure is implemented to replace a macro in a C parser. It tells the
parser to return to the normal state, which can avoid the problem of multiple
error messages resulting from a single mistake as the parser gets
resynchronized.

120

PCYACC OO TOOLKIT • Printed - December 11, 2000

XIII. Basic Parser and Lexer

1. Introduction

Visual basic, as the fastest and easiest way to create applications, provides
the user with a complete set of tools to simplify rapid application
development. The BASIC refers to “Beginners All-Purpose Symbolic
Instruction Code” language. Visual Basic has evolved from the original
BASIC language and adds in several keywords, statements and functions to
deal with Window’s graphical user interface. Since VBScript for Internet
programming is a subset of the Visual Basic language, so Abraxas Software
will provide identical VBasic parser and lexer to VBScript except some
implementation details.

The Code in VBasic is stored in modules. Each module can contain:

• Declarations. You can place constant, type, variable, and dynamic-link
library (DLL) procedure declarations at the module level of form, class or
standard modules.

• Procedures. A Sub, Function, or Property procedure contains pieces of code
that can be executed as a unit.

Modules (.bas file name extension) are containers for procedures and
declarations commonly accessed by other modules within the application.
They can contain global (available to the whole application) or module-level
declarations of variables, constants, types, external procedures, and global
procedures.

121

PCYACC OO TOOLKIT • Printed - December 11, 2000

There are two separate phases for generating a VBasic Parser. The following
diagram shows the phase:

myparser.y

PCYACC

myparser.h myparser.c

PCYTOOL

pcy_sk.bas

Figure 13-1. Diagram of VBasic parser generated by
PCYTOOL

 myparser.bas

In the first phase, based on the availability of a grammar description file,
simply invoke PCYACC tool on the command line to create a C parser. Once
the C parser is generated by PCYACC, a utility program named PCYTOOL
is needed for generating a VBasic parser in the second phase, in which
myparser.bas is final VBasic parser.

122

PCYACC OO TOOLKIT • Printed - December 11, 2000

There are two separate phases for generating a VBasic Lexer. The following
diagram shows the phase:

 mylexer.l

 PCLEX

 mylexer.c

PCLTOOL

 pcl_sk.bas

 lex.bas

Figure 13-2. Diagram of VBasic lexer generated by
PCLTOOL

In the first phase, based on the availability of a scanner description file,
simply invoke PCLEX tool on the command line to create a C lexer. Once the
C lexer is generated by PCLEX, a utility program named PCLTOOL is
needed for generating a VBasic lexer in the second phase.

123

PCYACC OO TOOLKIT • Printed - December 11, 2000

2. Structure of VBasic Parser and Lexer

The VBasic code of a lexical analyzer generated by PCLTOOL has the
following layout,

1. Code from the section 1 of .l file

2. Data tables

3. Module-level variables

4. Auxilary procedures

5. Function yylex()

6. Code from the section 3 of .l

Figure 13-3. Structure of VBasic Code Generated by
PCLTOOL

1). Code segment copied directly from the declaration section of lexer file:
This part contains the declarations of variables and functions to be used in
embedded actions. It varies with different lexical analyzers and it is optional.
The code in this section should be written in VBasic language.

2). Data tables: This part consists of the data tables for driving the
Deterministic Finite Automaton (DFA) simulator. They are different for
different lexical analyzers.

3). Module-level variables: This part consists of the variables representing
the input stream buffer and pointers that indicate the status of the input
being scanned. They should be almost the same for different lexical
analyzers.

4). Auxiliary procedures: This part defines the procedures that are called by
the lexer function yylex().

5). Function yylex(): This part defines the function yylex().

6). Code segment copied directly from the function section of the lexer file:
This part contains the possible function definitions by the user. It is also
optional. The User is responsible for writing the valid VBasic code.

124

PCYACC OO TOOLKIT • Printed - December 11, 2000

The layout of generated VBasic YACC code is shown below.

Code copied directly from the section 1 of .y file (if there is any)

Code copied directly from the section 3 of .y file (if there is any)

Constants representing tokens

Data tables

Auxiliary Yacc procedures

Function yyparse()

Figure 13-4 Layout of Generated VBasic YACC code

1). Code copied directly from the section 1 of .y file: This part contains the
declarations of variables and functions to be used in embedded actions. It
varies with different parsers and it is optional. The code in this section
should be written in VBasic language.

2). Data tables: This part consists of the parsing tables for driving yacc
machine. They are different for different syntax analyzers.

3). Constants representing tokens: This part consists of all tokens defined in
grammar file.

4). Code copied directly from the section 3 of .y file: This part contains the
possible function definitions by user. It is also optional. User is responsible
for writing valid VBasic code.

5). Auxiliary yacc procedures: This part defines the procedures that are called
by yyparse function.

6). Function yyparse(): This part contains yyparse() function definition.

a. VBasic Lex Modules

All the auxiliary procedures related to lexer are listed below:

Sub YY_DO_BEFORE_ACTION()

This procedure does some preparation job before scanner takes actions.

Sub YY_DEFAULT_ACTION()

125

PCYACC OO TOOLKIT • Printed - December 11, 2000

This procedure is defined as a macro in a C lexer. It will emit information of
yytext buffer to the output the user defined.

Sub YY_DO_BEFORE_SCAN()

This procedure puts the character that the scanner holds at the end of
yytext.

 Function yywrap

This procedure simply returns 1.

Sub YY_FATAL_ERROR(s)

This procedure prints out the string specified in as the function call
parameter to the output the user defines.

Sub YY_INIT_PROC()

This procedure is used to initialize the scanner’s state.

Function YY_INPUT(buf, index, maxsize)

This procedure deals with storage of input stream into a lexer. It gets input
from the input stream and stores it into a buffer, which the user can specify
as the function call parameter.

Sub YY_OUTPUT(c)

This procedure outputs one character to the output the user defines.

Function input()

This procedure returns the next character from input stream.

Sub unput(c)

This procedure puts a character back to the logical input stream. The user
can call several times in a row to put several characters back into the input
stream.

Function yylex()

This procedure is used to start or resume scanning. It separates an input
character stream into token following the patterns specified in lex (*.l) file.

126

PCYACC OO TOOLKIT • Printed - December 11, 2000

b. VBasic Yacc Modules

All the auxiliary procedures related to parser are listed below:

Sub yyerrok()

This procedure is implemented to replace a macro in C parser. It tells the
parser to return to the normal state, which can avoid the problem of multiple
error messages resulting from a single mistake as the parser gets
resynchronized.

Function yyparse()

This procedure is the entry point to a yacc-generated parser. When your
program calls the member function yyparse(), the parser attempts to parse
an input stream. The parser returns a value of zero if the parse succeeds and
non-zero if not.

c. VBasic Error Report Modules

All the auxiliary procedures related to error reporting are listed below:

Sub set_input_file_name(fname)

This procedure is used to set pcyyerrsrc so that error report could show
which input source file the parser is processing.

Sub errprefix(msg)

This procedure takes a syntax error message as an input and displays it
according to the current token information. The current token information
including the line number, the character position number, etc, is provided by
the lexer.

Sub yyerror(s, t)

This procedure simply calls errprefix to finish error reporting by
reformatting the error message display. The two input strings can represent
two different error messages to be displayed.

Function yydisplay(token)

This procedure displays token context based on the input token value.
Normally, this function is provided by the user.

Sub yyskiptoken()

127

PCYACC OO TOOLKIT • Printed - December 11, 2000

This procedure makes file indicator forward one unit to skip the current
token as if the current token being processed by the lexer does not exist in the
input stream.

Sub yyskipsymbol()

This procedure simply skips the current symbol in the sentential form if it is
a terminal and keeps the current token unchanged.

Sub yyreplacetoken(token)

This procedure takes a replacing token as an input and replaces the token
that will be processed by the lexer.

Function yymatchtoken(token)

This procedure takes a matching token as an input parameter. It will return
1 if the current token matched the actual input token value, otherwise
returns 0 instead.

Sub yyinserttoken(token)

This procedure takes a token to be inserted as an input parameter. Its
purpose is to insert a token in front of the one that will be processed by the
lexer.

128

PCYACC OO TOOLKIT • Printed - December 11, 2000

XIV DESIGN REQUIREMENT FOR YACC

1. Objective

 • Extend to support generation of parser in multiple programming
 languages.

 • Extend to support generation of multiple parsers in the same
 program.

2. Scope

 • Support generation of C parser.

 • Support generation of C++ parser.

 • Support generation of JAVA parser.

 • Support generation of Borland Delphi parser.

 • Support generation of PASCAL parser.

 • Support generation of Visual Basic Script parser.

 • Support generation of BASIC parser.

3. Command Line Options

To use PCYTOOL, there are two procedures to follow:

 A. Create a C parser by using PCYACC.

 B. Create a target language parser other than C by using PCYTOOL.

The diagram is shown as below:

PCYACC*.y *.c
PCYTOOL *.cpp

Figure 14-1. Diagram for Creating C++ Parser by Using PCYTOOL

129

PCYACC OO TOOLKIT • Printed - December 11, 2000

A. In the first phase, apply the following on the command line.

pcyacc [options] <gdf_name>

<gdf_name> is the grammar description file name.

Options supported by PCYACC are listed as follows.

-c Generate yytab.c .

-C<fn> Generate the output source file <fn>.

-d Generate token definition file yytab.h.

-D<hf> Generate token definition file <hf>. If <hf> is not specified the
filename defaults to <gdf_base>.h.

-h Print a help screen.

-n Disable the #line directive.

-p<pf> Override default skeleton file with a user-provided parser skeleton
 file <pf>.

-P<pf> Same as -p<pf>.

-r Report progress during execution.

-R Same as [-r].

-s Use short integer internal arrays instead of long integer array.

-S Syntax check only.

-t Build a parse tree file “yy.ast”.

-T<tf> Build a parse tree file <tf>.ast.

-v Produce a textual parsing table “yy.lrt”.

-V<vf> Produce a textual parsing table <vf>.lrt.

B. In the second phase, apply the following on the command line.

pcytool [options] yacc.y yacc.c

“yacc.y” is the grammar description file.

130

PCYACC OO TOOLKIT • Printed - December 11, 2000

“yacc.c” is the actual parser code in C.

Options supported by PCYTOOL are as follows.

-D<fn> Override global definition and macro definition file with <fn>
(The default file name is yypcy.h).

-K<n> Identify the dialect of parser assumed for the source files.
A digit should follow immediately, corresponding to the dialect.
The dialects of parser that are supported include:

 0=> C

 1 => C++

 2 => JAVA

 3 => DELPHI

 4 => PASCAL

 5.=> VISUAL BASIC SCRIPT

 6 => BASIC

• THE DEFAULT IS K1 (C++)*

-L<fn> Append lexer file with file name <fn>.

-N” “ Change prefix class name ABX.

-O<fn> Override the default parser output file name with <fn> (the
default name is the basename of C parser plus the program
extension name which depends on “K” option).

-P<pf> Override internal skeleton with file <pf> for parser.

-T” “ Change default table type for C parser generated by PCYACC.

All these options are case-insensitive.

Files exist before running PCYTOOL for default C++ parser:

 pcy_sk.hpp Parser class definition.

 pcy_sk.cpp Parser class member function definition.

 yacc.c Syntactic parser generated by PCYACC.

131

PCYACC OO TOOLKIT • Printed - December 11, 2000

Example command line to generate a C++ parser:

pcytool yacc.y yacc.c

Files generated after running the command line:

 yypcy.h Global definitions and macro definitions(Optional).

 yacc.h Token definition file for lexer.

 yacc.cpp Actual parser code.

These files combined with the lexer source code files and the source code files
containing user functions form a complete set of source code for a user
project.

132

PCYACC OO TOOLKIT • Printed - December 11, 2000

XV DESIGN REQUIREMENT FOR LEX

1. Objective

 • Extend to support generation of lexer in multiple programming
 languages.

 • Extend to support generation of multiple lexers in the same program.

2. Scope

 • Support generation of C lexer.

 • Support generation of C++ lexer.

 • Support generation of JAVA lexer.

 • Support generation of Borland Delphi lexer.

 • Support generation of PASCAL lexer.

 • Support generation of Visual Basic Script lexer.

 • Support generation of BASIC lexer.

Each parser has a set of tokens associated with it. Usually, each parser
requires a different lexer to identify the tokens from input source files.
Several parsers implementing different grammars on the same set of tokens
may use the same lexer. In this case, the lexer SDF will only have to include
one of the token definition header files generated from parsers with the same
set of tokens.

3. Command Line Options

To use PCLTOOL, there are two procedures to follow:

 A. Create a C lexer by using PCLEX.

 B. Create a target language lexer other than C by using PCLTOOL.

133

PCYACC OO TOOLKIT • Printed - December 11, 2000

The diagram is shown as below:

PCLEX
*.l *.c

PCLTOOL *.cpp

Figure 15-1. Diagram for Creating C++ Lexer
by Using PCLTOOL

A. In the first phase, apply the following on the command line.

pclex [options] <sdf_name>

<sdf_name> is the scanner description file name.

Options supported by PCLEX are listed as follows.

-c Override the default output C file name.

-C<fn> Generate the output source file <fn>.

-h Print a help screen.

-i Generate a case-insensitive lexer.

-n Disable the #line directive.

-p<pf> Override default skeleton file with a user provided scanner
skeleton file <pf>.

-s Only check the input, if illegal token is found, exit.

These options are case-insensitive except for the [-c] and [-C] options.

B. In the second phase, apply the following on the command line.

pcltool [options] lex.l lex.c

“lex.l” is the scanner description file name.

“lex.c” is the actual lexer code in C.

All the options supported by PCLTOOL are as follows.

-D<fn> Override global definition and macro definition file with <fn>

134

PCYACC OO TOOLKIT • Printed - December 11, 2000

(the default file name is yypcl.h).

-K<n> Identify the dialect of lexer assumed for the source files. A digit
should follow immediately, corresponding to the dialect. The
dialects of lexer that are supported include:

 0=> C

 1 => C++

 2 => JAVA

 3 => DELPHI

 4 => PASCAL

 5.=> VISUAL BASIC SCRIPT

 6 => BASIC

• THE DEFAULT IS K1 (C++)*

-N” “ Change prefix class name ABX.

-O<fn> Override the default lexer output file name with <fn> (the
 default name is the basename of C lexer plus program
 extension name which depends on “K” option).

-P<pf> Override internal skeleton with file <pf> for lexer.

-Y<fn> Append parser file with file name <fn>.

All these options are case-insensitive.

Files exist before running PCLTOOL for default C++ lexer:

 pcl_sk.hpp Lexer class definition.

 pcl_sk.cpp Lexer class member function definition.

 lex.c Lexer generated by PCLEX.

Example command line to generate a C++ lexer:

pcltool lex.l lex.c

Files generated after running the command line:

135

PCYACC OO TOOLKIT • Printed - December 11, 2000

 yypcl.h Global definitions and macro definitions (Optional).

 lex.cpp Actual lexer code.

This file combined with the parser source code files and the source code file
containing user functions form a complete set of source code for a user
project.

136

PCYACC OO TOOLKIT • Printed - December 11, 2000

APPENDIX I. HOW TO CREATE C PARSER AND
LEXER

1. Command Line Format for PCYACC

PCYACC can be invoked by typing PCYACC, followed by zero or more
command line options, followed by a file name. For example:

PCYACC [options] <gdf_name>

Where <gdf_name> is the name of the file containing a grammar
description program (GDF), a program written in GDF, and [options]
represents zero or more command line options. Files used to hold GDF’s
are called grammar description files, or GDF’s for short.

Although there is no restriction on the format of input file names, it is a
good practice to give PCYACC GDF’s an extension field distinguishable
from other kinds of files. Recommended extensions are “.y”, “.Y” and we
will use “.y” throughout this document. PCYACC compiles the GDF
<gdf_name> and produces a C program that is an LALR (look-ahead LR)
parser for the languages defined by the GDF. By default, the generated
parser is kept in a file with an extension “.c” with the same basename as
the GDF <gdf_name>.

If PCYACC is invoked without a grammar description file, it will display
a short message advising you of the correct command line format.

2. Command Line Options for PCYACC

Command line options are used to override default actions or file name
conventions, or to indicate actions you want PCYACC to perform in addition
to what it does automatically. Available options are described below:

-c This option overrides default C file name. Instead of using the
basename of the grammar description file plus the “.c” extension,
it uses “yytab.c”. This option is provided to maintain compatibility
with earlier versions.

-C<cf> Like -c, this option overrides default C file name, but uses the
name provided by the user, <cf>.

-d This option tells PCYACC to produce a C header file, using the
default file name “yytab.h”, in addition to the C code file. This
header file is used primarily by your lexical analysis routine

137

PCYACC OO TOOLKIT • Printed - December 11, 2000

yylex(). The definitions generated by PCYACC are used globally
at parse time unless your yylex() routine is local to your grammar.
PCYACC basically enumerates all of the tokens declared in the
grammar, and these enumerated values are used as messages
between yyparse() and yylex().

-D<hf> Like -d, this option produces a C header file, but with a different
file name convention. If no <hf> is provided, PCYACC will use
the basename of the grammar description file with an extension
“.h”; otherwise <hf> will be used instead.

-h Print a help screen.

-n Disable #line numbers from the .C output of PCYACC. This
option is quite useful if you are trying to use a source code
debugger. In normal operation the output .C file uses #line to
make the output relative to the original .y file, this normally
causes source code debuggers like CodeView to generate strange
results.

-p<pf> Use the user provided parser skeleton contained in <pf> file
instead of the system default (internal skeleton). A sample
parser skeleton is supplied in the \src directory of the
PROGRAM diskette. (yaccpar.c). The external parser skeleton is
a commonly used to support multiple parsers.

-P<pf> Same as -p<pf>.

-r Report progress during execution. This is a good idea for huge
grammars that take seemingly forever to compile.

-R Report progress during execution.

-s This option instructs PCYACC produces short integer internal
arrays for the parser. The default type for the internal arrays is
long integer.

-S This option overrides PCYACC’s default action. Instead of
processing the grammar description file, it quits after the syntax
analysis phase. This option is useful for doing syntax debugging
on large grammar description files, especially when coupled with
an extensible text editor.

-t This option tells PCYACC to construct the parser in such a way
that it will build a parse tree for the program being processed.
The parse tree, by default, is saved to the file “yy.ast”. (not

138

PCYACC OO TOOLKIT • Printed - December 11, 2000

compatible with the -p switch, requires internal skeleton parser).
The parse tree is not actually generated until the parser is executed.

-T<tf> Same as option -t, except with different file name conventions. If
<tf> is not provided, the parse tree is saved to the file named by
the basename of the grammar description file with an “.ast”
extension; otherwise, it is saved to <tf>.

-v This option produces a textual parsing table, in addition to the C
parser, using the default file name “yy.lrt”. The parsing table is
a required tool in debugging PCYACC grammars.

-V<vf> Same as option -v, except that the parsing table is saved to
either <vf> or a file named by the basename of the grammar
description file and the extension “.lrt”.

3. Command Line Format for PCLEX

PCLEX can be invoked by typing PCLEX, followed by zero or more command
line options, followed by a file name. For example:

PCLEX [options] <sdf_name>

Where <sdf_name> is the name of a scanner description file (SDF) and
[options] represents zero or more command line options. If PCLEX is invoked
with no arguments, it outputs a short message advising you of the correct
command line format.

4. Command Line Options for PCLEX

Command line options are used to override default actions or change the file
name conventions. The available options are:

-c This option overrides the default output C file name, but uses
the file name provided by the user in <cf>.

-C<cf> Like -c, this option overrides the default output C file name, but
uses the file name provided by the user in <cf>.

-h Show a help screen.

-i Build a case-insensitive scanner. The case of letters in the
patterns is ignored and patterns are matched regardless of case.
The matched text in “yytext”, the internal defined character
pointer pointing to the matched input token, is not altered, the
original case of the scanner input is preserved.

139

PCYACC OO TOOLKIT • Printed - December 11, 2000

-n Suppress #line directives in the output scanner source file. This
option is useful if you are trying to use a source code debugger.
In normal operation the output scanner source file uses #line to
make the reference to the original scanner description file, this
normally causes source code debuggers like CodeView to
generate strange results.

-p<pf> Use the user provided scanner skeleton in <pf> instead of the
default .

-s This option suppress the default rule (the unmatched input be
written to “stdout”). With this option, if the scanner finds input
that is not matched by any rules, the scanner program quits
with a “pclex scanner jammed” message.

Only the “-c” and “-C” options are case-sensitive.

5. Default Skeleton File

The default internal lexer skeleton file is the same as “pcl_sk.c” included in
PCYACC OO SDK.

The default internal parser skeleton file is the same as “pcy_sk.c” included
in PCYACC OO SDK.

140

PCYACC OO TOOLKIT • Printed - December 11, 2000

APPENDIX II. HOW TO CREATE C++ PARSER AND
LEXER

To create C++ parser and lexer is based on the assumption that the user has
already gotten C parser and lexer generated by PCYACC and PCLEX
respectively (APPENDIX I has a detailed description on how to use PCYACC
and PCLEX to create C parser and lexer.). A utility program is involved to
translate C code into C++ code with availability of C++ skeleton files.

1. Command Line Format for PCYTOOL

pcytool [options] yacc.y yacc.c

Where “yacc.y” is the grammar description file and “yacc.c” is the actual
parser code in C. If PCYTOOL is invoked without a grammar description file
or actual C parser file, it will display a short message advising you of the
correct command line format.

2. Command Line Options for PCYTOOL

Options supported by PCYTOOL are as follows.

-D<fn> Override global definition and macro definition file with <fn>
 (the default file name is yypcy.h).

-K1 K option can identify the dialect of parser assumed for the
source files. A digit should follow immediately, corresponding to
the dialect. Option k1 will tell PCYTOOL the target parser will
be created in C++ code.

-N” “ Change prefix class name ABX.

-O<fn> Override the default parser output file name with <fn> (the
default name is the basename of C parser plus the “.CPP”
extension if no K option is on or K1 is set).

-P<pf> Override internal skeleton with file <pf> for parser.

All these options are case-insensitive.

3. Command Line Format for PCLTOOL

pcltool [options] lex.l lex.c

141

PCYACC OO TOOLKIT • Printed - December 11, 2000

Where “lex.l” is scanner description file, “lex.c” is the actual lexer code in C
and [options] represents zero or more command line options. If PCLTOOL is
invoked with no arguments, it outputs a short message advising you of the
correct command line format.

4. Command Line Options for PCLTOOL

All the options supported by PCLTOOL are as follows.

-D<fn> Override global definition and macro definition file with <fn>
(the default file name is yypcl.h).

-K1 K option can identify the dialect of lexer assumed for the source
files. A digit should follow immediately, corresponding to the
dialect. Option k1 will tell PCLTOOL the target lexer will be
created in C++ code.

-N” “ Change prefix class name ABX.

-O<fn> Override the default lexer output file name with <fn> (the
default name is the basename of C lexer plus the “.cpp”
extension if no K option is on or K1 option is set).

-P<pf> Override internal skeleton with file <pf> for lexer.

All these options are case-insensitive.

5. Default Skeleton File

The default internal lexer skeleton file is the same as “pcl_sk.cpp” included
in PCYACC OO SDK. The corresponding header file is “pcl_sk.hpp”.

The default internal parser skeleton file is the same as “pcy_sk.cpp”
included in PCYACC OO SDK. The corresponding header file is
“pcy_sk.hpp”.

142

PCYACC OO TOOLKIT • Printed - December 11, 2000

APPENDIX III. HOW TO CREATE JAVA PARSER
AND LEXER

To create JAVA parser and lexer is based on the assumption that user has
already gotten C parser and lexer generated by PCYACC and PCLEX
respectively (APPENDIX I has detailed description on how to use PCYACC
and PCLEX to create C parser and lexer.). A utility program is involved to
translate C code into JAVA code with availability of JAVA skeleton files.

1. Command Line Format for PCYTOOL

pcytool [options] yacc.y yacc.c

Where “yacc.y” is the grammar description file and “yacc.c” is the actual
parser code in C. If PCYTOOL is invoked without a grammar description file
or actual C parser, it will display a short message advising you of the correct
command line format. Be sure you have to put “#define STAND_ALONE 1” in
the user declaration section in *.y file when you expect a standalone Java
parser.

2. Command Line Options for PCYTOOL

Options supported by PCYTOOL are as follows.

-K2 K option can identify the dialect of parser assumed for the
source files. A digit should follow immediately, corresponding to
the dialect. Option k2 will tell PCYTOOL the target parser will
be created in JAVA code.

-O<fn> Override the default parser output file name with <fn> (the
default name is the basename of C parser plus the “.JAVA”
extension if K2 option is on).

-P<pf> Override internal skeleton with file <pf> for parser.

All these options are case-insensitive.

3. Command Line Format for PCLTOOL

If you expect a standalone Java lexer, the following command should be
appeared on the PCLTOOL command line.

pcltool [options] lex.l lex.c

143

PCYACC OO TOOLKIT • Printed - December 11, 2000

Where “lex.l” is scanner description file, “lex.c” is the actual lexer code in C
and [options] represents zero or more command line options. If PCLTOOL is
invoked with no arguments, it outputs a short message advising you of the
correct command line format. Be sure if you expect standalone Java lexer,
you have to put “#define STAND_ALONE 1” in user declaration section in *.l
file.

If you expect a single application with both parser and lexer, the following
command should be appeared on the PCLTOOL command line.

pcltool [options] yacc.h lex.l lex.c

Where “yacc.h” is token definition file generated by PCYACC(-D option),
“lex.l” is scanner description file, “lex.c” is the actual lexer code in C and
[options] represents zero or more command line options. If PCLTOOL is
invoked with no arguments, it outputs a short message advising you of the
correct command line format.

4. Command Line Options for PCLTOOL

All the options supported by PCLTOOL are as follows.

-K2 K option can identify the dialect of lexer assumed for the source
files. A digit should follow immediately, corresponding to the
dialect. Option k2 will tell PCLTOOL the target lexer will be
created in JAVA code.

-O<fn> Override the default lexer output file name with <fn> (the
default name is the basename of C lexer plus the “.java”
extension if K2 option is on).

-P<pf> Override internal skeleton with file <pf> for lexer.

All these options are case-insensitive.

5. Default Skeleton File

The default internal lexer skeleton file is the same as “pcl_sk.jav” included
in PCYACC OO SDK that should be kept in your current working directory.

The default internal parser skeleton file is the same as “pcy_sk.jav” included
in PCYACC OO SDK that should be kept in your current working directory.

144

PCYACC OO TOOLKIT • Printed - December 11, 2000

APPENDIX IV. HOW TO CREATE DELPHI PARSER
AND LEXER

To create Delphi parser and lexer is based on the assumption that user has
already gotten C parser and lexer generated by PCYACC and PCLEX
respectively (APPENDIX I has detailed description on how to use PCYACC
and PCLEX to create C parser and lexer.). A utility program is involved to
translate C code into DELPHI code with internal skeleton or availability of
user provided DELPHI skeleton files.

1. Command Line Format for PCYTOOL

pcytool [options] yacc.y yacc.c

Where “yacc.y” is grammar description file and “yacc.c” is the actual parser
code in C. If PCYTOOL is invoked without a grammar description file, it will
display a short message advising you of the correct command line format.

2. Command Line Options for PCYTOOL

Options supported by PCYTOOL are as follows.

-K3 K option can identify the dialect of parser assumed for the
source files. A digit should follow immediately, corresponding to
the dialect. Option k3 will tell PCYTOOL the target parser will
be created in DELPHI code.

-O<fn> Override the default parser output file name with <fn> (the
default name is the basename of C parser plus the “.pas”
extension if K3 option is on. The YACC unit program is named
as “yacc.pas”).

-P<pf> Override internal skeleton with file <pf> for parser.

All these options are case-insensitive.

3. Command Line Format for PCLTOOL

pcltool [options] lex.l lex.c

Where “lex.l” is scanner description file, “lex.c” is the actual lexer code in C
and [options] represents zero or more command line options. If PCLTOOL is
invoked with no arguments, it outputs a short message advising you of the
correct command line format.

145

PCYACC OO TOOLKIT • Printed - December 11, 2000

4. Command Line Options for PCLTOOL

All the options supported by PCLTOOL are as follows.

-K3 K option can identify the dialect of lexer assumed for the source
files. A digit should follow immediately, corresponding to the
dialect. Option k3 will tell PCLTOOL the target lexer will be
created in DELPHI code.

-O<fn> Override the default lexer output file name with <fn> (the
default name is the basename of C lexer plus the “.pas”
extension if K3 option is on. The LEX unit program is named
as “lex.pas”).

-P<pf> Override internal skeleton with file <pf> for lexer.

All these options are case-insensitive.

5. Default Skeleton File

The default internal lexer skeleton file is the same as “pcl_sk.dph” included
in PCYACC OO SDK, which should be kept in your current working
directory.

The default internal parser skeleton file is the same as “pcy_sk.dph”
included in PCYACC OO SDK, which should be kept in your current working
directory.

146

PCYACC OO TOOLKIT • Printed - December 11, 2000

APPENDIX V. HOW TO CREATE PASCAL PARSER
AND LEXER

To create PASCAL parser and lexer is based on the assumption that the user
has already gotten C parser and lexer generated by PCYACC and PCLEX
respectively (APPENDIX I has detailed description on how to use PCYACC
and PCLEX to create C parser and lexer.). A utility program is involved to
translate C code into PASCAL code with availability of PASCAL skeleton
files.

1. Command Line Format for PCYTOOL

pcytool [options] yacc.y yacc.c

Where “yacc.y” is grammar description file and “yacc.c” is the actual parser
code in C. If PCYTOOL is invoked without a grammar description file, it will
display a short message advising you of the correct command line format.

2. Command Line Options for PCYTOOL

Options supported by PCYTOOL are as follows.

-K4 K option can identify the dialect of parser assumed for the
source files. A digit should follow immediately, corresponding to
the dialect. Option k4 will tell PCYTOOL the target parser will
be created in PASCAL code.

-O<fn> Override the default parser output file name with <fn> (the
default name is the basename of C parser plus the “.pas”
extension if K4 option is on).

-P<pf> Override internal skeleton with file <pf> for parser.

All these options are case-insensitive.

3. Command Line Format for PCLTOOL

pcltool [options] lex.l lex.c

Where “lex.l” is scanner description file, “lex.c” is the actual lexer code in C
and [options] represents zero or more command line options. If PCLTOOL is
invoked with no arguments, it outputs a short message advising you of the
correct command line format.

147

PCYACC OO TOOLKIT • Printed - December 11, 2000

4. Command Line Options for PCLTOOL

All the options supported by PCLTOOL are as follows.

-K4 K option can identify the dialect of lexer assumed for the source
files. A digit should follow immediately, corresponding to the
dialect. Option k4 will tell PCLTOOL the target lexer will be
created in PASCAL code.

-O<fn> Override the default lexer output file name with <fn> (the
default name is the basename of C lexer plus the “.pas”
extension if K4 option is on).

-P<pf> Override internal skeleton with file <pf> for lexer.

All these options are case-insensitive.

5. Default Skeleton File

The default internal lexer skeleton file is the same as “pcl_sk.pas” included
in PCYACC OO SDK, which should be kept in your current working
directory.

The default internal parser skeleton file is the same as “pcy_sk.pas”
included in PCYACC OO SDK, which should be kept in your current working
directory.

148

PCYACC OO TOOLKIT • Printed - December 11, 2000

APPENDIX VI. HOW TO CREATE VISUAL BASIC
SCRIPT PARSER AND LEXER

To create VISUAL BASIC SCRIPT parser and lexer is based on the
assumption that the user has already gotten C parser and lexer generated by
PCYACC and PCLEX respectively (APPENDIX I has detailed description on
how to use PCYACC and PCLEX to create C parser and lexer.). A utility
program is involved to translate C code into VISUAL BASIC SCRIPT code
with availability of VISUAL BASIC SCRIPT skeleton files.

1. Command Line Format for PCYTOOL

pcytool [options] yacc.y yacc.c

Where “yacc.y” is grammar description file and “yacc.c” is the actual parser
code in C. If PCYTOOL is invoked without a grammar description file, it will
display a short message advising you of the correct command line format.

2. Command Line Options for PCYTOOL

Options supported by PCYTOOL are as follows.

-K5 K option can identify the dialect of parser assumed for the
source files. A digit should follow immediately, corresponding to
the dialect. Option k5 will tell PCYTOOL the target parser will
be created in VISUAL BASIC SCRIPT code.

-L<fn> Append lexer file with file name <fn>.

-O<fn> Override the default parser output file name with <fn> (the
default name is the basename of C parser plus the “.bas”
extension if K5 option is on).

-P<pf> Override internal skeleton with file <pf> for parser.

All these options are case-insensitive.

3. Command Line Format for PCLTOOL

pcltool [options] lex.l lex.c

Where “lex.l” is scanner description file, “lex.c” is the actual lexer code in C
and [options] represents zero or more command line options. If PCLTOOL is
invoked with no arguments, it outputs a short message advising you of the
correct command line format.

149

PCYACC OO TOOLKIT • Printed - December 11, 2000

4. Command Line Options for PCLTOOL

All the options supported by PCLTOOL are as follows.

-K5 K option can identify the dialect of lexer assumed for the source
files. A digit should follow immediately, corresponding to the
dialect. Option k5 will tell PCLTOOL the target lexer will be
created in VISUAL BASIC SCRIPT code.

-O<fn> Override the default lexer output file name with <fn> (the
default name is the basename of C lexer plus the “.bas”
extension if K5 option is on).

-P<pf> Override internal skeleton with file <pf> for lexer.

-Y<fn> Append parser file with file name <fn>.

All these options are case-insensitive.

5. Default Skeleton File

The default internal lexer skeleton file is the same as “pcl_sk.vbs” included
in PCYACC OO SDK, which should be kept in your current working
directory.

The default internal parser skeleton file is the same as “pcy_sk.vbs”
included in PCYACC OO SDK, which should be kept in your current working
directory.

150

PCYACC OO TOOLKIT • Printed - December 11, 2000

APPENDIX VII. HOW TO CREATE BASIC PARSER
AND LEXER

To create BASIC parser and lexer is based on the assumption that the user
has already gotten C parser and lexer generated by PCYACC and PCLEX
respectively (APPENDIX I has detailed description on how to use PCYACC
and PCLEX to create C parser and lexer.). A utility program is involved to
translate C code into BASIC code with availability of BASIC skeleton files.

1. Command Line Format for PCYTOOL

pcytool [options] yacc.y yacc.c

Where “yacc.y” is grammar description file and “yacc.c” is the actual parser
code in C. If PCYTOOL is invoked without a grammar description file, it will
display a short message advising you of the correct command line format.

2. Command Line Options for PCYTOOL

Options supported by PCYTOOL are as follows.

-O<fn> Override the default parser output file name with <fn> (the
default name is the basename of C parser plus the “.bas”
extension if K6 option is on).

-K6 K option can identify the dialect of parser assumed for the
source files. A digit should follow immediately, corresponding to
the dialect. Option k6 will tell PCYTOOL the target parser will
be created in BASIC code.

-P<pf> Override internal skeleton with file <pf> for parser.

All these options are case-insensitive.

3. Command Line Format for PCLTOOL

pcltool [options] lex.l lex.c

Where “lex.l” is scanner description file, “lex.c” is the actual lexer code in C
and [options] represents zero or more command line options. If PCLTOOL is
invoked with no arguments, it outputs a short message advising you of the
correct command line format.

151

PCYACC OO TOOLKIT • Printed - December 11, 2000

4. Command Line Options for PCLTOOL

All the options supported by PCLTOOL are as follows.

-K6 K option can identify the dialect of lexer assumed for the source
files. A digit should follow immediately, corresponding to the
dialect. Option k6 will tell PCLTOOL the target lexer will be
created in BASIC code.

-O<fn> Override the default lexer output file name with <fn> (the
default name is the basename of C lexer plus the “.bas”
extension if K6 option is on).

-P<pf> Override internal skeleton with file <pf> for lexer.

All these options are case-insensitive.

5. Default Skeleton File

The default internal lexer skeleton file is the same as “pcl_sk.bas” included
in PCYACC OO SDK, which should be kept in your current working
directory.

The default internal parser skeleton file is the same as “pcy_sk.bas”
included in PCYACC OO SDK, which should be kept in your current working
directory.

152

PCYACC OO TOOLKIT • Printed - December 11, 2000

APPENDIX VIII. ERROR MESSAGES FOR
PCYTOOL

Error Code: Error Message and Explanation

TY1000 can not open source file

 Opening a source file has failed.

TY1001 the input source file name *.* is not correct

 The input source file is not expected.

TY1002 option -* usage is not correct

 Option is behind source files on the pcytool command line.

TY1003 there is no number following the option

 Some options require corresponding number following like -k
option.

TY1004 option is not supported

 The option the user invokes on the command line is not supported
by PCYTOOL.

TY1005 there is no filename following the option

 There is no source file on the command line.

TY1006 the C++ skeleton parser file name is not correct

 The extension of C++ skeleton parser is not “.cpp”.

TY1007 fseek failed

 fseek failure.

TY1008 searching file provided by user failed

 PCYTOOL can not find the file provided by the user.

TY1009 syntax in grammar file is not correct

 Syntax error is found in grammar description file

153

PCYACC OO TOOLKIT • Printed - December 11, 2000

TY1010 * is not supported

 Some information in grammar file can not be handled correctly
by PCYTOOL.

TY1011 End of file is reached

 End of file.

TY1012 missing ‘ or “

 Missing ‘ or “ in grammar file.

TY1013 bad comment syntax

 The syntax for comment is not correct.

TY1014 syntax error in Grammar file

 PCYTOOL finds syntax error in Grammar file.

TY1015 READ and WRITE are not allowed in the file

 The file can not be accessed.

TY1016 no grammar file is provided

 User does not provide GDF on the pcytool command line.

154

PCYACC OO TOOLKIT • Printed - December 11, 2000

APPENDIX IX. ERROR MESSAGES FOR PCLTOOL

Error Code: Error Message and Explanation

TL1000 can not open source file

 Opening a source file has failed.

TL1001 the input source file name *.* is not correct

 The input source file is not expected.

TL1002 option -* usage is not correct

 Option is behind source files on the pcltool command line.

TL1003 there is no number following the option

 Some options require corresponding number following like -k
option.

TL1004 option is not supported

 The option the user invokes on the command line is not supported
by PCLTOOL.

TL1005 there is no filename following the option

 There is no source file on the command line.

TL1006 the C++ skeleton lexer file name is not correct

 The extension of C++ skeleton lexer is not “.cpp”.

TL1007 fseek failed

 fseek failure.

TL1008 searching file provided by user failed

 PCLTOOL can not find the file provided by user.

TL1009 syntax in scanner description file is not correct

 Syntax error is found in scanner description file

TL1010 * is not supported

155

PCYACC OO TOOLKIT • Printed - December 11, 2000

 Some information in scanner description file can not be handled
correctly by PCLTOOL.

TL1011 end of file is reached

 End of file.

TL1012 missing ‘ or “

 Missing ‘ or “ in scanner description file.

TL1013 bad comment syntax

 The syntax for comment is not correct.

TL1014 syntax error in Scanner Description file

 PCLTOOL finds syntax error in Scanner Description file.

TL1015 READ and WRITE are not allowed in the file

 The file can not be accessed.

TL1016 no scanner description file is provided

 User does not provide SDF on the pcltool command line.

156

PCYACC OO TOOLKIT • Printed - December 11, 2000

APPENDIX X. BIBLIOGRAPHY

Aho, A.V., Sethi, R., and Ullman, J.D. “Compilers Principles, Techniques, and
Tools”, Addison Weslay, Reading, Massachusetts, 1985.

Aho, A.V. and Ullman, J.D. “The Theory of Parsing, Translation, and
Compiling”, Vol. 1, Prentice-Hall, Englewood Cliffs, New Jersey, 1972.

Allen, J. “NATURAL LANGUAGE UNDERSTANDING”, Second Edition, The
Benjamin/Cummings Publishing Company, Inc., Reading,
Massachusetts, 1995.

Appel, A. W. “Modern Compiler Implementation in Java”, First Edition,
Cambridge University Press, 1997

Arnold, K. and Gosling, J. “The Java Programming Language ”, The Java
Series, Addison-Wesley, Reading, Massachusetts, 1996.

Cline, M.P. and Lomow, G.A. “C++ FAQs Frequently Asked Questions”,
Addison-Wesley, Reading, Massachusetts, 1994.

Coplien, J. “Advanced C++ Programming Styles and Idioms”, Addison-
Wesley, Reading, Massachusetts, 1992.

Cornell, G. and Horstmann, C.S. “Core JAVA”, SunSoft Press, Prentice-Hall,
Mountain View, CA, 1996.

Eckel, B. “THINKING in C++”, Prentice-Hall, Englewood Cliffs, New Jersey,
1995.

Ellis, M.A. and Stroustrup, B “The Annotated C++ Reference Manual”, ANSI
Base Document, Addison-Wesley, Reading, Massachusetts, 1990.

Flanagan, D. “Java in a Nutshell”, First Edition, O’Reilly & Associates, CA,
1996.

Friedl, J.E.F. “Mastering Regular Expressions”, A Nutshell Handbook, First
Edition, O’Reilly & Associates, CA, 1997.

Gosling, J., Joy, B. and Steele, G. “The Java Language Specification”, The
Java Series, Addison-Wesley, Reading, Massachusetts, 1996.

Grand, M. “JAVA Language Reference”, First Edition, O’Reilly & Associates,
CA, 1997.

Grune, D. and Jacobs, C.J.H. “Parsing Techniques”, Ellis Horwood,

157

PCYACC OO TOOLKIT • Printed - December 11, 2000

Chichester, England, 1990.

Holmes, J. “OBJECT-ORIENTED COMPILER CONSTRUCTION”, Prentice-
Hall, Englewood Cliffs, New Jersey, 1995.

Linden, P.V.D. “Just JAVA”, ”, SunSoft Press, Prentice-Hall, Mountain View,
CA, 1996.

Lippman, S.B. “C++ Primer”, Addison-Wesley, Reading, Massachusetts, 1989.

Lomax, P. “Learning VBSCRIPT”, O’Reilly & Associates, First Edition, 1997.

Mason, T., Brown D., and Levine, J. “Lex & Yacc”, O’Reilly & Associates,
Second Edition, 1992.

Microsoft Corp, “Microsoft Visual Basic 5.0 Programmer’s Guide”, Microsoft
Press, 1997.

Musciano, C. and Kennedy, B. “HTML The Definitive Guide”, O’Reilly &
Associates, First Edition, 1996.

Pittman, T. and Peters, J. “The Art of Compiler Design THEORY AND
PRACTICE”, Prentice-Hall, Englewood Cliffs, New Jersey, 1992.

Simon, J., “VBScript SUPERBIBLE”, Waite Group Press, 1996.

Stroustrup, B. “The C++ Programming Language”, Second Edition, Addison-
Wesley, Reading, Massachusetts, 1991.

Stroustrup, B. “The C++ Programming Language”, Third Edition, Addison-
Wesley, Reading, Massachusetts, 1997.

Wilhelm, R. and Maurer, D. “COMPILER DESIGN”, Addison-Wesley,
Reading, Massachusetts, 1995

PCYACC OO TOOLKIT • Printed - December 11, 2000

Index

A

ABXError class
constructor · 42
destructor · 42
members · 41
methods · 42

ABXExprNode class
constructor · 50
definition · 50
destructor · 50
methods · 50

ABXExprNodeList class
constructor · 51
definition · 50
destructor · 51
methods · 51

ABXLeaf class
constructor · 48
definition · 48
destructor · 48

ABXLeafList class
constructor · 49
definition · 48
destructor · 49
methods · 49

ABXLex class
constructor · 14
destructor · 14
members · 13
methods · 15

ABXParseTree class
constructor · 51
definition · 51
destructor · 51
methods · 52

ABXParseTreeNode class
constructor · 48
definition · 47
destructor · 48

ABXSymbolTable class
constructor · 34
destructor · 34
members · 33
methods · 34

ABXYacc class
constructor · 29
destructor · 29
members · 22
methods · 29

addSymbol method
of class ABXSymbolTable · 34
of class JavaSymbolTable · 69

append_node method
of class ABXExprNodeList · 51
of class ABXLeafList · 49
of class JavaExprNodeList · 66
of class JavaLeafList · 65

B

BUFSIZ
of class JavaLex · 57
of DelphiLex unit · 80
of Pascal Lexer · 115

C

C Lexer
layout · 10

C Parser
layout · 20

C++ Lexer
code structure · 12, 16
constructor · 14
destructor · 14
methods · 15
methods to create · 8
usage of yyLex method · 17

C++ Parser
code structure · 22
constructor · 22
destructor · 23
methods to create · 5, 21
switch between two different lexers · 28

cleanScope method
of class ABXSymbolTable · 34
of class JavaSymbolTable · 69

constructor
DelphiLex unit

of TLex object · 82
DelphiYacc unit

of TYacc object · 85
of class ABXError · 42
of class ABXExprNode · 50
of class ABXExprNodeList · 51
of class ABXLeaf · 48
of class ABXLeafList · 49
of class ABXLex · 18

2

PCYACC OO TOOLKIT • Printed - December 11, 2000

of class ABXParseTree · 51
of class ABXParseTreeNode · 48
of class ABXSymbolTable · 34
of class ABXYacc · 29
of class JavaError · 61
of class JavaExprNode · 65
of class JavaExprNodeList · 66
of class JavaLeaf · 64
of class JavaLeafList · 65
of class JavaLex · 57
of class JavaParseTree · 66
of class JavaParseTreeNode · 64
of class JavaSymbolTable · 68
of class JavaYacc · 60

create_leaf_list method
of class ABXLeafList · 49
of class JavaLeafList · 65

createscope method
of class JavaSymbolTable · 69

createScope method
of class ABXSymbolTable · 34

D

decorate_tree method
of class ABXParseTree · 52
of class JavaParseTree · 67

definition
of class ABXExprNode · 50
of class ABXExprNodeList · 50
of class ABXLeaf · 48
of class ABXLeafList · 48
of class ABXParseTree · 51
of class ABXParseTreeNode · 47

delete_node method
of class ABXLeafList · 49
of class JavaLeafList · 65

deleteSymbol method
of class ABXSymbolTable · 35
of class JavaSymbolTable · 69

Delphi Lexer
constant declaration · 79
procedures to create · 79
type declaration · 80

Delphi library
basic units · 77

Delphi Parser
constant declaration · 84
example · 86
procedures to create · 78
type declaration · 84

DelphiLex unit
TLex object

methods · 82
DelphiYacc unit

TYacc object
methods · 85

destructor

DelphiLex unit
of TLex object · 82

DelphiYacc unit
of TYacc object · 85

of class ABXError · 42
of class ABXExprNode · 50
of class ABXExprNodeList · 51
of class ABXLeaf · 48
of class ABXLeafList · 49
of class ABXLex · 18
of class ABXParseTree · 51
of class ABXParseTreeNode · 48
of class ABXSymbolTable · 34
of class ABXYacc · 29

Deterministic Finite Automaton · 11

E

error
categories · 37
recovery · 38
reporting · 37

errprefix method
DelphiLex unit

of TLex object · 84
errprefix procedure

of VBasic Error Report · 126
of VBScript Error Report · 96

execute_tree method
of class ABXParseTree · 52
of class JavaParseTree · 67

F

F_BUFSIZ
of class JavaLex · 57
of DelphiLex unit · 80
of Pascal Lexer · 115

G

get_attr method
of class ABXExprNode · 50
of class JavaExprNode · 65

get_BufferPtrC method
of class ABXLex · 18

get_yyBufferPtrC method
of class ABXLex · 15

get_yyerrcnt method
of class JavaYacc · 61

get_yyErrorCount method
DelphiYacc unit

of TYacc object · 85
of class ABXYacc · 29

get_yylineno method
DelphiLex unit

3

PCYACC OO TOOLKIT • Printed - December 11, 2000

of TLex object · 82
of class JavaLex · 57

get_yyLineNo method
of class ABXLex · 15, 18

get_yytext method
of class JavaLex · 59

get_yyText method
of class ABXLex · 15, 18

getScope method
of class ABXSymbolTable · 35
of class JavaSymbolTable · 69

getSymbolAttribute method
of class ABXSymbolTable · 35
of class JavaSymbolTable · 69

getSymbolType method
of class ABXSymbolTable · 35
of class JavaSymbolTable · 69

getSymbolValue method
of class ABXSymbolTable · 35
of class JavaSymbolTable · 70

I

initSymbolTable method
of class ABXSymbolTable · 35
of class JavaSymbolTable · 70

input method
DelphiLex unit

of TLex object · 82
of class ABXLex · 15, 18
of class JavaLex · 58

input procedure
of VBasic Lex · 125
of VBScript Lex · 95

insertSymbol method
of class ABXSymbolTable · 35
of class JavaSymbolTable · 70

interaction
C++ parser and lexer · 23

J

Java class library
basic classes · 54

JavaError
constructor · 61
members · 61
methods · 61

JavaExprNode
constructor · 65
members · 65
methods · 65

JavaExprNodeList
constructor · 66
members · 66
methods · 66

JavaLeaf

constructor · 64
members · 64
methods · 64

JavaLeafList
constructor · 65
memebers · 64
methods · 64

JavaLex
constructor · 57
members · 56
methods · 57

JavaParseTree
constructor · 66
members · 66
methods · 66

JavaParseTreeNode
constructor · 64
members · 63
methods · 63

JavaSymbolTable
constructor · 68
members · 68
methods · 68

JavaYacc
constructor · 60
members · 59
methods · 60

imp_union class · 60
structure · 54
symbol table · 67

class ABXsymtab · 68
class ABXsymtabentry · 68
class ABXVALUE · 67

Java Lexer
procedures to create · 56

Java Parser
example · 72
procedures to create · 55

L

lookupSymbol method
of class ABXSymbolTable · 35
of class JavaSymbolTable · 70

M

maxScope method
of class ABXSymbolTable · 36
of class JavaSymbolTable · 70

members
of class ABXError · 41
of class ABXLex · 13
of class ABXSymbolTable · 33
of class ABXYacc · 22
of class JavaError · 61
of class JavaExprNode · 65

4

PCYACC OO TOOLKIT • Printed - December 11, 2000

of class JavaExprNodeList · 66
of class JavaLeaf · 64
of class JavaLeafList · 64
of class JavaLex · 56
of class JavaParseTree · 66
of class JavaParseTreeNode · 63
of class JavaSymbolTable · 68
of class JavaYacc · 59

methods
DelphiLex unit

TLex object · 82
DelphiYacc unit

TYacc object · 85
of class ABXError · 42
of class ABXExprNode · 50
of class ABXExprNodeList · 51
of class ABXLeafList · 49
of class ABXLex · 15
of class ABXParseTree · 52
of class ABXSymbolTable · 34
of class ABXYacc · 29
of class JavaError · 61
of class JavaExprNode · 65
of class JavaExprNodeList · 66
of class JavaLeaf · 64
of class JavaLeafList · 64
of class JavaLex · 57
of class JavaParseTree · 66
of class JavaParseTreeNode · 63, 64
of class JavaSymbolTable · 68
of class JavaYacc · 60

O

optimize method
of class ABXParseTree · 52
of class JavaParseTree · 66

P

parse tree node
analysis for building · 47
classifications · 46

Pascal Lexer
constant declaration · 114
functions · 116

errprefix · 118
get_yylineno · 116
input · 116
REJECT · 117
set_input_file · 116
unput · 116
YY_DEFAULT_ACTION · 116
YY_DO_BEFORE_ACTION · 117
YY_DO_BEFORE_SCAN · 117
YY_FATAL_ERROR · 117
YY_INIT_PROC · 117

YY_INPUT · 117
YY_LENG · 117
YY_OUTPUT · 117
yyerror · 118
yyless · 117
yylex · 116
yywrap · 117

procedures to create · 114
type declaration · 115
var declaration · 115

Pascal Parser
constant declaration · 118
functions

yyerrok · 119
yyParse · 119

procedures to create · 113
type declaration · 118
var declaration · 118

PCYACC OO TOOLKIT
basic classes · 1
C++ basic classes · 3
Delphi basic units · 77
general structure · 2
Java basic classes · 54
Pascal functions · 116
VBasic modules · 124
VBScript modules · 94

print_tree method
of class ABXParseTree · 52
of class JavaParseTree · 67

R

REJECT method
DelphiLex unit

of TLex object · 84
of class JavaLex · 59

S

Scanner Description Language · 10
set_input_file method

DelphiLex unit
of TLex object · 82

set_input_file_name method
of class JavaYacc · 60

set_input_file_name procedure
of VBasic Error Report · 126
of VBScript Error Report · 96

set_YYSTYPEInstance method
of class ABXLex · 15, 18

setScope method
of class ABXSymbolTable · 36
of class JavaSymbolTable · 70

setSymbolAttribute method
of class ABXSymbolTable · 36
of class JavaSymbolTable · 70

5

PCYACC OO TOOLKIT • Printed - December 11, 2000

setSymbolType method
of class ABXSymbolTable · 36
of class JavaSymbolTable · 70

setSymbolValue method
of class ABXSymbolTable · 36
of class JavaSymbolTable · 71

show_tree method
of class ABXParseTree · 52
of class JavaParseTree · 67

state stack
of C++ Parser · 23

symbol table
entry definition · 33
entry structure · 32
representation · 30, 31

T

type
object type

TLex · 81
TYacc · 85

Pascal Parser
valuestack · 118

symbol's · 31
TObject type · 81
YYSTYPE · 12, 18

yylval and yyval
share · 18
sharing implementation · 23

U

unput method
DelphiLex unit

of TLex object · 82
of class ABXLex · 15, 18
of class JavaLex · 58

unput procedure
of VBasic Lex · 125
of VBScript Lex · 95

V

value stack
of C++ Parser · 23

VBasic Error Report
module · 126

VBasic Lexer
code structure · 123
module · 124
procedures to create · 122

VBasic Parser
code structure · 124
module · 126
procedures to create · 121

VBScript Error Report
module · 96

VBScript Lexer
code structure · 93
example · 98
module · 94
procedures to create · 92

VBScript Parser
code structure · 94
example · 104
module · 96
procedures to create · 91

Y

YY_BUF_LIM
of class JavaLex · 57
of DelphiLex unit · 80
of Pascal Lexer · 115

YY_BUF_MAX
of class JavaLex · 57
of DelphiLex unit · 80
of Pascal Lexer · 115

YY_BUF_SIZE
of class JavaLex · 57
of DelphiLex unit · 80
of Pascal Lexer · 115

YY_DEFAULT_ACTION method
DelphiLex unit

of TLex object · 83
of class JavaLex · 58

YY_DEFAULT_ACTION procedure
of VBasic Lex · 125
of VBScript Lex · 95

YY_DO_BEFORE_ACTION method
DelphiLex unit

of TLex object · 83
of class JavaLex · 59

YY_DO_BEFORE_ACTION procedure
of VBasic Lex · 124
of VBScript Lex · 94

YY_DO_BEFORE_SCAN method
DelphiLex unit

of TLex object · 83
of class JavaLex · 59

YY_DO_BEFORE_SCAN procedure
of VBasic Lex · 125
of VBScript Lex · 95

YY_FATAL_ERROR method
DelphiLex unit

of TLex object · 83
of class JavaLex · 58

YY_FATAL_ERROR procedure
of VBasic Lex · 125
of VBScript Lex · 95

YY_INIT method
of class JavaLex · 58

YY_INIT_PROC method

6

PCYACC OO TOOLKIT • Printed - December 11, 2000

DelphiLex unit
of Tlex object · 83

YY_INIT_PROC procedure
of VBasic Lex · 125
of VBScript Lex · 95

YY_INPUT method
DelphiLex unit

of TLex object · 83
of class JavaLex · 58

YY_INPUT procedure
of VBasic Lex · 125
of VBScript Lex · 95

YY_LENG method
DelphiLex unit

of TLex object · 83
of class JavaLex · 59

YY_MAX_LINE
of class JavaLex · 57
of DelphiLex unit · 80
of Pascal Lexer · 115

YY_OUTPUT method
DelphiLex unit

of TLex object · 83
of class JavaLex · 58

YY_OUTPUT procedure
of VBasic Lex · 125
of VBScript Lex · 95

YY_SET_EOL method
of class JavaLex · 58

yyCheck method
of class ABXLex · 15, 18

yyDisplay method
of class ABXError · 42
of class JavaError · 63

yydisplay procedure
of VBasic Error Report · 126
of VBScript Error Report · 96

yyerrok method
DelphiYacc unit

of TYacc object · 86
of class JavaYacc · 60

yyerrok procedure
of VBasic Yacc · 126
of VBScript Yacc · 96

yyerror method
DelphiLex unit

of Tlex object · 84
yyError method

of class ABXError · 38, 42
of class JavaError · 62

yyerror procedure
of VBasic Error Report · 126
of VBScript Error Report · 96

yyErrPrefix method
of class ABXError · 38, 42
of class JavaError · 62

yyGetCharNumber method
of class ABXError · 39, 42
of class JavaError · 62

yyGetErrFileName method
of class ABXError · 39
of class JavaError · 62

yyGetErrorCount method
of class ABXError · 39, 42
of class JavaError · 62

yyGetExpectedTokens method
of class ABXError · 39, 43
of class JavaError · 62

yyGetFileName method
of class ABXError · 43

yyGetLineNumber method
of class ABXError · 39, 43
of class JavaError · 62

yyGetToken method
of class ABXError · 39, 43
of class JavaError · 61

yyInit method
of class ABXLex · 15, 19

yyInsertToken method
of class ABXError · 39, 43
of class JavaError · 63

yyinserttoken procedure
of VBasic Error Report · 127
of VBScript Error Report · 97

yyless method
DelphiLex unit

of TLex object · 83
of class JavaLex · 58

yylex method
DelphiLex unit

of TLex object · 82
of class JavaLex · 59

yyLex method
of class ABXLex · 15, 19

yylex procedure
of VBasic Lex · 125
of VBScript Lex · 95

yylval · 13, 18, 23, 99
yyMatchToken method

of class ABXError · 39, 43
of class JavaError · 63

yymatchtoken procedure
of VBasic Error Report · 127
of VBScript Error Report · 97

YYMAXDEPTH
of class ABXYacc · 29

yyparse method
of class JavaYacc · 60

yyParse method
DelphiYacc unit

of TYacc object · 85
of class ABXYacc · 29

yyparse procedure
of VBasic Yacc · 126
of VBScript Yacc · 96

yyPeer method
of class ABXLex · 15, 19

yyReplaceToken method

7

PCYACC OO TOOLKIT • Printed - December 11, 2000

of class ABXError · 40, 43
of class JavaError · 63

yyreplacetoken procedure
of VBasic Error Report · 127
of VBScript Error Report · 97

yySearch method
of class ABXLex · 15, 19

yySetBuffer method
of class ABXLex · 15, 19

yySetErrText method
of class ABXError · 39, 43
of class JavaError · 62

yySetInput method
of class ABXLex · 15, 19

yySetLexer · 28
yySetLexer method

of class ABXYacc · 29
yySetTokStack method

of class ABXYacc · 29
yySkipSymbol method

of class ABXError · 40, 43
of class JavaError · 63

yyskipsymbol procedure

of VBasic Error Report · 127
of VBScript Error Report · 97

yySkipToken method
of class ABXError · 40, 44
of class JavaError · 62

yyskiptoken procedure
of VBasic Error Report · 127
of VBScript Error Report · 97

YYSTYPE · 12, 15, 23, 72, 78
yytext · 14, 30, 58, 83, 95, 116, 125
yyval · 13, 23, 110
yywrap method

DelphiLex unit
of TLex object · 83

of class ABXLex · 19
of class JavaLex · 58

yyWrap method
of class ABXLex · 16

yywrap procedure
of VBasic Lex · 125
of VBScript Lex · 95

PCYACC OO TOOLKIT • Printed - December 11, 2000

PCYACC

OBJECT ORIENTED

TOOLKIT

PCYACC�
 is a software product of ABRAXAS SOFTWARE INC.

For more information, contact

ABRAXAS SOFTWARE INC.
Post Office Box 19586

PORTLAND, OR 97280 USA

TEL: 503-232-0540
FAX: 503-232-0543
support@pcyacc.com

www.pcyacc.com

Copyright © 1984-2000 by ABRAXAS SOFTWARE INC.

	I. OVERVIEW
	II. INTRODUCTION
	
	1. Features
	2. Conventions
	3. Reading This Manual

	III. OPERATING PROCEDURE
	
	1. Writing Grammar Description Files for PCYACC
	2. Generating the Object-Oriented Parsers
	3. Writing Scanner Description Files
	4. Generating the Object-Oriented Lexers
	5. Integration of All Source Files

	IV. PCLEX
	
	1. C Code Structure Generated by PCLEX
	2. Code Generated by PCLEX in C++
	3. Structure of Generated C++ Code
	4. Synopsis for ABXLex Class
	a. Description
	b. Example
	c. Public Constructor and Destructor
	d. Public Member Functions

	V. PCYACC
	
	1. C++ Code Generated with PCYACC C++ Skeleton
	2. Generating C++ Code by Using PCYTOOL
	3. Synopsis for ABXYacc Class
	a. Description
	b. Example
	c. Public Constructor and Destructor
	d. Public Member Functions

	VI. SYMBOL TABLE
	
	1. Introduction
	2. Synopsis for ABXSymbolTable Class
	a. Description
	b. Symbol Table Entry Definition
	c. Private Class Member
	d. Public Constructor and Destructor
	e. Public Member Functions

	VII. ERROR HANDLER
	
	1. Introduction
	a. Error Reporting
	b. Error Recovery

	2. Functions for Error Reporting
	3. Functions for Error Recovery
	4. Synopsis for ABXError Class
	a. Description
	b. ABXError Class Definition
	c. Public Constructor and Destructor
	d. Public Member Functions

	VIII. PARSE TREE NODE
	
	1. Analyze Parse Tree Node Class ABXParseTreeNode
	2. Structure for ABXParseTreeNode Class
	3. Structure for ABXLeaf Class
	4. Expression Classes ABXExprNode
	5. Structure for Parse Tree Class ABXParseTree

	IX. Java Parser and Lexer
	
	1. Introduction
	2. Java Class Library
	a. JavaLex Class
	b. JavaYacc Class
	c. JavaError Class
	d. JavaParseTree Class
	(i). JavaParseTreeNode Class
	(ii). JavaLeaf Class
	(iii). JavaLeafList Class
	(iv). JavaExprNode Class
	(v). JavaExprNodeList Class
	(vi). JavaParseTree Class

	e. JavaSymbolTable Class

	3. Example

	X. Delphi Parser and Lexer
	
	1. Introduction
	2. Delphi Unit Library
	a. DelphiLex Unit
	b. DelphiYacc Unit

	3. Example

	XI. VBScript Parser and Lexer
	
	1. Introduction
	2. Structure of VBScript Parser and Lexer
	a. VBScript Lex Modules
	b. VBScript Yacc Modules
	c. VBScript Error Report Modules

	3. Example

	XII. Pascal Parser and Lexer
	
	1. Introduction
	2. Pascal Library
	a. Pascal Lexer
	b. Pascal Parser

	XIII. Basic Parser and Lexer
	
	1. Introduction
	2. Structure of VBasic Parser and Lexer
	a. VBasic Lex Modules
	b. VBasic Yacc Modules
	c. VBasic Error Report Modules

	XIV DESIGN REQUIREMENT FOR YACC
	
	1. Objective
	2. Scope
	3. Command Line Options

	XV DESIGN REQUIREMENT FOR LEX
	
	1. Objective
	2. Scope
	3. Command Line Options

	APPENDIX I. HOW TO CREATE C PARSER AND LEXER
	
	1. Command Line Format for PCYACC
	2. Command Line Options for PCYACC
	3. Command Line Format for PCLEX
	4. Command Line Options for PCLEX
	5. Default Skeleton File

	APPENDIX II. HOW TO CREATE C++ PARSER AND LEXER
	
	1. Command Line Format for PCYTOOL
	2. Command Line Options for PCYTOOL
	3. Command Line Format for PCLTOOL
	4. Command Line Options for PCLTOOL
	5. Default Skeleton File

	APPENDIX III. HOW TO CREATE JAVA PARSER AND LEXER
	
	1. Command Line Format for PCYTOOL
	2. Command Line Options for PCYTOOL
	3. Command Line Format for PCLTOOL
	4. Command Line Options for PCLTOOL
	5. Default Skeleton File

	APPENDIX IV. HOW TO CREATE DELPHI PARSER AND LEXER
	
	1. Command Line Format for PCYTOOL
	2. Command Line Options for PCYTOOL
	3. Command Line Format for PCLTOOL
	4. Command Line Options for PCLTOOL
	5. Default Skeleton File

	APPENDIX V. HOW TO CREATE PASCAL PARSER AND LEXER
	
	1. Command Line Format for PCYTOOL
	2. Command Line Options for PCYTOOL
	3. Command Line Format for PCLTOOL
	4. Command Line Options for PCLTOOL
	5. Default Skeleton File

	APPENDIX VI. HOW TO CREATE VISUAL BASIC SCRIPT PARSER AND LEXER
	
	1. Command Line Format for PCYTOOL
	2. Command Line Options for PCYTOOL
	3. Command Line Format for PCLTOOL
	4. Command Line Options for PCLTOOL
	5. Default Skeleton File

	APPENDIX VII. HOW TO CREATE BASIC PARSER AND LEXER
	
	1. Command Line Format for PCYTOOL
	2. Command Line Options for PCYTOOL
	3. Command Line Format for PCLTOOL
	4. Command Line Options for PCLTOOL
	5. Default Skeleton File

	APPENDIX VIII. ERROR MESSAGES FOR PCYTOOL
	
	Error Code: Error Message and Explanation

	APPENDIX IX. ERROR MESSAGES FOR PCLTOOL
	
	Error Code: Error Message and Explanation

	APPENDIX X. BIBLIOGRAPHY

