
Abraxas Software Copyright 1998-2000 © CodeFix 

 1

C and C++ 
Source Code 

Modification 
using 

CodeFix 
 

by 

Patrick Conley. 

Codefix™ is a product of Abraxas Software, Inc. 

Codefix was designed & written by Patrick Conley. 

 

 

 
 

For more information, contact: 
Abraxas Software, Inc. 
Post Office Box 19586 

Portland, OR 97280, USA 
Phone:  503-232-0540 

Fax:  503-232-0543 
Email: support@abxsoft.com 

Internet: www.abraxas-software.com 
 

mailto:support@abxsoft.com
http://www.abraxas-software.com/


Abraxas Software Copyright 1998-2000 © CodeFix 

 2

Table of Contents 
PREFACE ...................................................................................................................................... 3 

I. INTRODUCTION TO SOURCE CODE MODIFICATION ................................................................ 4 
C++ PARSING COMPLEXITY ......................................................................................................................... 4 

II. CALENDAR RELATED SYMBOL IDENTIFICATION ................................................................... 6 
COLLECTION OF FOREIGN/DOMESTIC DATE RELATED SYMBOLS IN A C++ PROGRAM.................................. 7 
PROVIDED SYMBOL TABLES ........................................................................................................................ 7 

Collection Phase ..................................................................................................................................... 8 
A symbol collection example................................................................................................................... 8 

IDENTIFYING CODE USING DATE NAME CRITERIA ...................................................................................... 9 
AUTOMATIC DETECTION OF DATE SYMBOLS IN C/C++............................................................................. 11 
AUTOMATIC CODE MODIFICATION FOR DATE PROGRAMMING PROBLEMS................................................ 12 

III. PROGRAM LAYOUT MODIFICATION......................................................................................... 13 

IV. OBFUSCATION AND/OR SHROUDING OF C++ PROGRAMS.................................................. 14 

V. DYNAMIC TESTING: INSERTION OF CODE FOR RUNTIME TESTING. .............................. 15 

VI. DATABASE GENERATION FROM C/C++ SOURCE CODE....................................................... 17 

VII. HTML GENERATION FROM C/C++............................................................................................. 18 

VIII. COMMENT ANALYSIS & GENERATION.................................................................................. 19 

IX. GENERATING PRE-COMPILED SOURCE PROGRAM ............................................................. 20 

X. REFERENCES....................................................................................................................................... 21 

INDEX ......................................................................................................................................................... 22 
 



Preface 
Maintaining programs in C or C++ is a difficult task. Even experienced programmers 
need tools to aid in the program development process, but all too few tools exist to detect 
bugs in C and C++ source code and help the programmer to avoid problems. 
Codefix is a powerful tool for modifying C and C++ source code. Unlike other tools, 
Codefix is itself fully programmable. It performs its primary task — analyzing and 
modifying C and C++ source code — entirely under the direction of a user-written 
control program.  
 
 
Codefix is a powerful tool for modifying C and C++ source code. Standards and mea-
sures can be specified by the user for a tremendous number of features of C++ code that 
have an impact on awareness, assessment, renovation, validation, and implementation. 
Codefix is designed to enhance dramatically the effectiveness and efficiency of project 
management in commercial and industrial programming efforts.  
A custom Codefix program specifying code standards and measures can be written by a 
project leader using the Codefix language (actually a restricted subset of C itself).  
Codefix can be programmed to: 
 
• Analyze source code for date programming problems, includes rules for date type-

encoded identifiers, proper use of date related macros and typedef's, prototypes, etc. 
Year-2000 is not the only calendar related date problem. There will be many 
problems in 2038 and coming leap years. CodeFix can be in the future to find and fix 
date problems. 

 
• Modify code layout to improve readability. Most standards are supported for 

indentation and source program formatting. Generate 'pretty' C++. 
 
• Obfuscation or shrouding of code for your distribution, yet still maintain proprietary 

trade secrets. 
 
• Dynamic Testing is available by inserting assertions at locations in the target code 

where possible conflicts are found. Add code for run-time testing & debugging. 
 
• Generate HTML Documentation from C/C++ programs. 
 
• Database Generation is provided where Oracle & Microsoft databases can be 

generated so management can analyze computer programs from their favorite 
database in the form of graphics. Generate databases from C++/C source code. 

 
• Commenting - Validating that C/C++ is correctly commented, and generating 

comment stubs for cases of missing comments. 
 



Abraxas Software Copyright 1998-2000 © CodeFix 

 4

I. Introduction to Source Code Modification 
 

Since 1982 Abraxas Software has been providing language solutions for all programming 
languages. We first started out  ‘CodeCheck’ development in 1986 and released the 
product in 1990. Since that time many people have asked us, “Why not ‘fix’ the problems 
instead of just logging them?.” 

It had been our feeling that the automatic modification of source code is a dangerous 
proposition, e.g. taking intelligent people out of the loop. 

Today we have identified five main areas where CodeFix can be used to support C/C++ 
programmers in source code modification. 

 

1.)  Date/Calendar ( Y2K ) symbol identification, commenting, and correction. Both 
foreign and domestic calendar problems can be found. 

 
2.)  Program Layout Modification [ Pretty Printing. ] C/C++ programs can either be 

made more readable or completely modified  to Hungarian naming standards. 
 
3.) Obfuscation and/or shrouding of C++ programs for public distribution. 
 
4.) Insertion of code for runtime testing. Dynamic testing is possible by selectively 

inserting check points in programs. 
 
5.) Database generation from C/C++ source code. Automatically generate component 

library of source code resources in native database formats. 
 
6.) HTML generation: Embed HTML and/or XML into source code for browser 

compliance and self-documentation. 
 
7.) Automatic commenting of source code. Have comments automatically ‘self describe’ 

the source. 
 

C++ parsing complexity 
The parsing of C++ is extremely complex and we believe that given our sixteen years 
experience in this area we can help professional programmers solve extremely difficult 
problems. Today with the use of templates, namespace and other abstractions it is 
impossible to identify YYMMDD symbol related problems using conventional tools that 
are simply based on searching for the explicit symbols. For instance is the following 
example: 

Class Date

{
public:



Abraxas Software Copyright 1998-2000 © CodeFix 

 5

Date ( int mon, int day, int year ); // constructor

Int getYear() const;

Private:

Int month, day, year; // private data

}
inline int Date::getYear() const

{
return year;

}

int retire;

Retire = Date.getYear(); //flag ‘retire’ as Date

In the above example most tools would not be aware that ‘retire’ is a Date type. Since 
CodeFix is capable of following the use of ‘Retire’ it is capable of finding even the most 
complex date usage problems related to C++. 



Abraxas Software Copyright 1998-2000 © CodeFix 

 6

II. Calendar related Symbol Identification 
 

The core concept of date/calendar assessment using CodeFix is that of symbol 
identification. Symbol Identification involves several passes to acquire the needed 
information. The passes can be considered as - collection, documentation, analysis, and 
correction. 

The scope of symbols can include. 

 

1. Simple 'C' data types, like  
 
int year=98.

 
Here we have the simple use of year with being initialized with a two digit date. 

 
2. Date/Time service routines, like  

 
set_this_year( (int) 98 )

In this case we have a time handler setting the current year to a two digit year. 
 
3.) Sort routines, like  
 

merge_table( emp_list, result_list, START_DATE, 98 )

Here we have a sort routine where the employee list is being merged by start_date 
 from a two digit date. 
 
4.) C++ complex data template types like,  

 
template <class date> class employee{};
employee<date> de;

 
 In this typical C++ template problem "de" for 'employee date' has been 
instantiated as a date type. 



Abraxas Software Copyright 1998-2000 © CodeFix 

 7

 

Collection of foreign/domestic Date related Symbols in a C++ program 
 

Collection involves the building of a calendar-name symbol tables that the expert system 
‘codefix’ will use in the identification process. 

 

A simple symbol table may be thought as the following. 

 

Begin beg bgn mdy mmddyy mmyy 

Month mon mo mmm ccyy cyyddd 

Cyyddm cyymmdd Curr Current date Day 

 
Figure 1. 
 
As shown in figure 1, we have a collection of symbols, which in effect are just strings of 
common Year-2000 related names. These are string known to represent time/date 
information and experience has shown that these are the typical names that programmers 
have used historically for time/date data types. 
 
The problem of course is that not all information representing time/date information uses 
these name combinations. History has shown that not only do programmers not use 
meaningful names in their programs, they may even use the name of their cat to represent 
the day of year! 
 
The collection phase of CodeFix is to build the symbol table, e.g. build a list of strings 
that by context represents date and/or highly likely may represent dates, by the context of 
the program using expert system technology and advanced parsing techniques. 
 

Provided Symbol Tables 
 
Codefix comes with several pre-built symbol tables for checking source code, they 
include - 
 
1.) Simple symbols 
 

Simple symbols containing the classic symbols usually provided by most 
YEAR2000 documentation, it includes about two dozen of the most common 
Symbols used in programming for dates. 
 

2.) Advanced symbols 
 



Abraxas Software Copyright 1998-2000 © CodeFix 

 8

 This example is from a large suite of 'date' related public code samples, this  
Symbol table provides hundreds of symbols used for representing dates in the 
industry. 

 
3.) Foreign symbols 
 
 This example provides a large set of strings used in providing computation for 
 Worldwide calendar sets outside of the USA. 
 

Collection Phase 
 
This section will discuss how to build your own CodeFix symbol table. 
 
The generation of symbol tables requires the extraction of symbols a large set of C/C++ 
which is know to contain 'date' related computation in your organization. Most likely 
after the generation of the initial symbol table some pruning will be required to reject 
base types that are not considered date related. 
 
For example, 
 
Check -rcollect.cc datecode.c
 
In the above example, expert system rule script symbol.cc contains the 'rules' for building 
the symbol table from the known date code in the example datecode.c. 
 
The results will be written to the file symbol.tmp, by default. If a name other than 
symbol.tmp is desired then the file symbol.cc must be modified. 
 
If there is more than one file to be included, the wild card option (*) may be used before 
the dot-c suffix. 
 

A symbol collection example 
 
What follows is a simple 'C' example of symbol table generation. 
 
1: typedef struct DATE_INFO

2: {
3: int year;
4: int month;
5: int day;
6: } DI;
7: DI dtglo; // global
8: enum DATE { year=1900 };
9: // simple 'date' example

10: struct DATE_INFO bridge_2to4 (struct DATE_INFO *date)
11: {
12: int y2, y4;



Abraxas Software Copyright 1998-2000 © CodeFix 

 9

13: struct DATE_INFO ywd; // local
14:
15: y2 = date->year;
16:
17: if ( y2 > 49 )
18: y4 = y2 + 1900;
19: else
20: y4 = y2 + 2000;
21:
22: ywd.year = y4; // local usage
23:
24: dtglo.year = y4; // global usage
25:
26: return (ywd);
27: }

 
For the above case the initial generated symbol table would appear as follows. 
 
DM year 2 DATE_INFO // data member 'year' from line 3
DM month 2 DATE_INFO
DM day 2 DATE_INFO
GT DATE_INFO 3 // GT - Global Tag 'DATE_INFO'
GD DI 26 26
GD dtglo 28 26 // GD - Global Definition
ED year 6 // Enum
GT DATE 1
LD date 26 26 // Local Definition
FD bridge_2to4 26 0 // function definition
LD y2 bridge_2to4 6 6
LD y4 bridge_2to4 6 6
LD ywd bridge_2to4 26 26
 
• note file name info and line number, author, other information is kept internally. 
 
The initial pass of CodeFix for Y2K collection is the generation of this intermediate 
symbol table containing the base information on all symbols defined. The constants 
shown can be found in the appendix and contain type information both current and base 
for complex types. 
 
The next step is determination of whether a date usage is found in the source example. 
 

Identifying Code Using Date Name Criteria 
 
Given input source code in the form of a singled file or complete project including many 
files a symbol table is generated as shown in the previous section. 
 



Abraxas Software Copyright 1998-2000 © CodeFix 

 10

The basic concept of identification is finding all use of symbols that meet the criteria of 
the 'Y2K' keyword list, and then generating a subset symbol table of the original 
definitions meeting those criteria. 
 
What  follows is an intermediate form of the source example in this section. Where the 
first character identifies source origination. 
 
Where first character in record means: 
 
* The file name 
- Source Header File ( This data is not emitted to the final output ) 
+ Source from file 
 
Note that before all usage of date symbols there is inserted code identified by the control 
string '$DATE$', all symbols defined that meet the criteria of Y2K keywords are marked 
for there usage, prior to use. This intermediate step helps identify potential Y2K usage of 
all symbols. 
 
*//$DATE$ MN b.c
+
+#include "b.h"
+
+DI dtglo; // global
+
+// simple 'date' example
+struct DATE_INFO bridge_2to4 (struct DATE_INFO *date)
+{
+ int y2, y4;
+ struct DATE_INFO ywd; // local
+
-//$DATE$ IL y2 int 6
-//$DATE$ IL date DATE_INFO 26
+ y2 = date->year;
+
-//$DATE$ IL y2 int 6
+ if ( y2 > 49 )
-//$DATE$ IL y4 int 6
-//$DATE$ IL y2 int 6
+ y4 = y2 + 1900;
+ else
-//$DATE$ IL y4 int 6
-//$DATE$ IL y2 int 6
+ y4 = y2 + 2000;
+
-//$DATE$ IL ywd DATE_INFO 26
-//$DATE$ IL y4 int 6
+ ywd.year = y4; // local usage
+
-//$DATE$ IG dtglo DI 28
-//$DATE$ IL y4 int 6
+ dtglo.year = y4; // global usage
+
-//$DATE$ IL ywd DATE_INFO 26



Abraxas Software Copyright 1998-2000 © CodeFix 

 11

+ return (ywd);
+}

 

Automatic Detection of Date Symbols in C/C++ 
 
Using our original example, from the previous section we now have collected the 
symbols, and reduced them to the subset that are candidates for Y2K. 
 
In this section we have emitted the original source with candidates documented. 
 
1: typedef struct DATE_INFO 
  2: { 
  3:    int year; 
  4:    int month; 
  5:    int day; 
  6: } DI; 
  7: DI dtglo;                         // global 
  8: enum DATE { year=1900 }; 
  9: // simple 'date' example 
 10: struct DATE_INFO bridge_2to4 (struct DATE_INFO *date) 
 11: { 
 12:    int y2, y4; 
 13:    struct DATE_INFO ywd;  // local 
 14: 
 15: //$DATE$ IL date DATE_INFO 26 // 26 - means 'struct' base type 
 16:    y2 = date->year; 
 17: 
 18:    if ( y2 > 49 ) 
 19:   y4 = y2 + 1900; 
 20:    else 
 21:           y4 = y2 + 2000; 
 22: 
 23:    ywd.year = y4; // local usage 
 24: 
 25: //$DATE$ IG dtglo DI 28  // 28 means defined type by 'typedef' 
 26:    dtglo.year = y4; // global usage 
 27: 
 28:    return (ywd); 
 29: } 
 
Note on lines 15 & 25 we have marked our commented control string with "$DATE$. 
Following the control string we have the name of the symbol, followed the base name of 
the object that defined the symbol, followed by the base type. The constants are defined 
in the appendix. 
 



Abraxas Software Copyright 1998-2000 © CodeFix 

 12

Obviously this example is very simple were only matching those types that are explicitly 
declared as having the date keyword in the symbol name. However we could have 
included scope to that of the parent type, or even in the case of the assignment we could 
consider the type on the left-value ( lvalue ), e.g. the type to the left of the equal sign. 
 

Automatic Code Modification for Date Programming Problems 
 
Finally were at the goal of our problem. Lets use a more simple case here. 
 



Abraxas Software Copyright 1998-2000 © CodeFix 

 13

 

III. Program Layout Modification. 
 
There are many standards for readability.  Codefix provides templates for the three most 
common formats to automatically be applied to you C/C++ software. 
 
Since the script sources are provided for the layout modification any type of formatting 
can be applied to your source code. 
 



Abraxas Software Copyright 1998-2000 © CodeFix 

 14

 

IV. Obfuscation and/or shrouding of C++ programs  
 
In selling or distributing software in today's marketplace it is essential to support all 
computer platforms. Given the large number of computer and operating system 
combinations its is not possible for even the largest corporation to ship binary software 
for all platforms. Given the portability of C/C++ the shipment of source code is sometime 
the only solution. CodeFix will apply the highest levels of code Obfuscation to your 
source code so that you can deliver to your customer with no loss of trade secrets. The 
generated source code while compilable is not meaningful to a recipient. 
 
 



Abraxas Software Copyright 1998-2000 © CodeFix 

 15

 

V. Dynamic Testing: Insertion of code for runtime testing. 
 
While the principal use of CodeFix is on that of static analysis, it is possible to apply the 
notion of runtime dynamic analysis. 
 
A simple example will be provided in the case of the Year-2000 problem. 
 
Int date;
 
Int year_4, year_2;

year_4 = year_2 + 1900;

the bridge patch replaces the line with code such as:

if (year_2 > 49)
year_4 = year_2 + 1900;

else
year_4 = year_2 + 2000;

In the above case it would be desirable for instance to find all symbols that use that are 
determined to represent a date and then assert that the dates are always in the YYYY 
format. 
 
In this case CodeFix would insert the following assertions prior to use in all cases of use 
the of the symbols 'year_2' and 'year_4'  
 
Where 'ASSERT_YYYY' is defined as - 
 
#define ASSERT_YYYY(x) ( if ( !x ) fprintf( testfp, "Invalid YYYY
usage in file=%s at line=%d\n", FILE, LINE )

CodeFix can automatically add the the assertion as above in all cases where a symbol is 
determined to be and illegal date.  
 
From the above case the included assertion into the source code would appear as follows. 
 
ASSERT_YYYY( year_4 > 1900 );
ASSERT_YYYY( year_2 > 1900 );
year_4 = year_2 + 1900;

As shown the assertions are inserted prior to use in the generated source code. The code 
is then compilied and linked and at runtime if there is case where the assertion fails then 
the message is written to the file channel testfp ( FILE * testfp ),where this may be a 
database for future analysis. 



Abraxas Software Copyright 1998-2000 © CodeFix 

 16

 
Codefix can add such assertions as detailed above for both simple ( int ) and complex ( 
class, template ) data types. 
 
 



Abraxas Software Copyright 1998-2000 © CodeFix 

 17

 

VI. Database generation from C/C++ source code. 
 
Quite often it is simply impossible to analyze the results from source code analysis 
products because of huge quantity of information. In this case it is essential to take a set 
of source code and generate a database that is compatible with Oracle or Microsoft 
Access so that management and/or programmers can analyze the results of source code 
analysis. 
 
year_4 = year_2 + 1900;

In this case whenever Y2K symbols are found the information is written to a file in 80 
byte card image format. 
 
Year_4  int file.c l  simple 
 
In this case the generated record would appear as above, where the data would contain the symbol name, 
the type, the file name, the line number, and the scope of the symbol. When this analysis is done on large 
body of code it is possible for a generic database to provide graphics and even keep track of all relevant 
information from the source including extracting information from the comments. 



Abraxas Software Copyright 1998-2000 © CodeFix 

 18

VII. HTML Generation from C/C++ 
 
In this section we discuss automatically generating web documentation from C/C++, e.g. 
generating HTML from C/C++ to be used by an internet browser. 
 



Abraxas Software Copyright 1998-2000 © CodeFix 

 19

VIII. Comment Analysis & Generation 
 
This section will discuss the requirements of source code commenting, validating, and generating correct 
comment blocks for documentation. 
 



Abraxas Software Copyright 1998-2000 © CodeFix 

 20

IX. Generating Pre-Compiled Source Program 
 
This Section will discuss generating pre-compiled translation units. A translation unit is one major source 
file with all #include<>’s and macros expanded. Often for performance reason and/or security individual 
system header files must be collapsed to one file rather than hundreds. While it is common for compilers to 
offer ‘pre-processing’ on source modules [ unix cc –E, dos cl –E ] system compilers to not macro expand 
and collapse individual header files. For instance #include<windows.h> in Microsoft systems references 
over 300,000 lines of code and #include’s 100’s of source files, so pre-compiling this header file can 
drastically improve compilation performance. 
 



Abraxas Software Copyright 1998-2000 © CodeFix 

 21

X. References 
 



Abraxas Software Copyright 1998-2000 © CodeFix 

 22

Index 
assert, 15 
Layout, 4 
Obfuscation, 4, 14 

parsing, 4 
runtime testing, 4 
Y2K, 4 

 


	Preface
	I. Introduction to Source Code Modification
	C++ parsing complexity
	
	
	
	Class Date





	II. Calendar related Symbol Identification
	Collection of foreign/domestic Date related Symbols in a C++ program
	Provided Symbol Tables
	Collection Phase
	A symbol collection example

	Identifying Code Using Date Name Criteria
	Automatic Detection of Date Symbols in C/C++
	Automatic Code Modification for Date Programming Problems

	III. Program Layout Modification.
	IV. Obfuscation and/or shrouding of C++ programs
	V. Dynamic Testing: Insertion of code for runtime testing.
	VI. Database generation from C/C++ source code.
	VII. HTML Generation from C/C++
	VIII. Comment Analysis & Generation
	IX. Generating Pre-Compiled Source Program
	X. References
	Index

