CodeCheck

The Quick Reference Guide

By Abraxas Software, Inc.

CodeCheck Quick Reference Page 1



Editor: Patrick Conley

Acknowledgments:
Thanks to the thousandss of CodeCheck customers who have
given us feedback in the past fifteen years.

All rights reserved. No part of this publication may be reproduced,
stored in retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or
otherwise, without written permission of Abraxas Software, Inc.
Although every precaution has been taken in the preparation of
these materials, Abraxas Software assumes no liability for damages
resulting from the use of the information contained herein.

Abraxas Software, Inc.
4726 SE Division Street
Portland, Oregon 97206 USA
TEL (503) 232-0540 FAX (503) 232-0543

Email: support@abxsoft.com
WWW: www.abxsoft.com
FTP: www.abxsoft.com/dl

PDF: www.abxsoft.com/pdf

Printed in U.S.A.
Fifth Printing, September 2003

Copyright (c) 1988-2004 by Abraxas Software, Inc.

CodeCheck Quick Reference Page 2



Table of Contents

Introduction - 4
Command Line Options - 5
File Name Conventions - 10

Variables and Functions- 11

CodeCheck Manifest Con-
stants - 40

System Dependent Constants -
46

Glossary - 50

CodeCheck Quick Reference Page 3



Introduction

CodeCheck is invoked by means of a command line with either of
these formats:

check -options foo.c
check foo.c -options

In this command line format foo.c refers to the name of the C source
file to be analyzed. Any number of source files may be specified,
arbitrarily intermixed with options.

The rules that are to be used to perform this analysis can be specified
in the options list, as described below. If no rule file is specified,
CodeCheck will look for a precompiled rule file named default.cco,
first in the current directory and then in the directories specified in
the CCRULES environment variable. If this file is not found,
CodeCheck will perform a simple syntactic scan of the source file
without any user-defined rules.

To analyze a multiple-file project with CodeCheck, either list all of
the source filenames on the command line, or create a new file
containing the names of all of the source files (excluding the names of
header files and libraries). Give this project file the extension .ccp.
Then invoke CodeCheck, specifying the project file instead of a
source file:

check -options myproject.ccp

CodeCheck will apply its rules to each source file named in
myproject.ccp, and will apply project-level checking across all the
files in the project. The ccp extension informs CodeCheck that the
specified file is a project file rather than a C source file. This
extension may be omitted in the command-line. Note: the project file
must end with a newline character. The file may contain switches
and comments.

To specify a rule file. The name of the rule file must follow
immediately, e.g. if the rule file name is foobar.cc and the C or C++
source filename is mysource.c: check -Rfoobar.cc mysource.c

CodeCheck Quick Reference Page 4



Command Line Options

CodeCheck command-line options are not case-sensitive. The
available options:

-B Instruct CodeCheck that braces are on the same nesting level as
material surrounded by the braces. If this option is not specified,
then CodeCheck assumes that the braces are at the previous nesting
level. This option only affects the predefined variable lin_nest_level.

-C Suppress type checking.

-D Define a macro. The name of the macro must follow
immediately. Thus

check -dDO_FOREVER=for(;;)
has the same effect as starting the source file with
#define DO_FOREVER for(;;)
Macros defined on the command-line may not have arguments.
-D?  Show internal symbol table for all macros. ( Debugging)

-E Do NOT ignore tokens that are derived from macro expansion
when perform-

ing counts, e.g. of operators and operands. The default (-E not
given)

is for CodeCheck to ignore all macro-derived tokens when
counting.

-F Count tokens, lines, operators, or operands when reading
header files.

The default (-F not specified) is for CodeCheck not to count
tokens,

lines, operators, or operands when reading header files.

CodeCheck Quick Reference Page 5



-G

-G Do not read each header file more than once per module.
CAUTION: Some header files may be designed to be read multiple
times, with conditional access to different sections of the header.

-I Specify a path to search when looking for header files. Use a
separate -1 for each path. The pathname must follow immediately,
e.g.

check -Iusr/metaware/headers src.c

-H Listlines from all header files in the listing file.

-J Suppress all error messages generated by CodeCheck. This
option does not

affect warnings generated by CodeCheck rules.

-K Identify the dialect of C to be assumed for the source files. A
digit

should follow immediately, corresponding to the dialect. The
dialects of C/C++ that are currently supported include:

=> K&R (1978) C

=> ANSI standard C

=> K&R C with common extensions
=> ANSI C with common extensions
=> AT&T C++ (cfront 3.0)

=> Zortech C++

Borland C++

=> Microsoft C++

=> IBM Visual Age C++

=> MetroWerks Code Warrior C++

0 => VAX and HP/Apollo C

1 => MetaWare High C

H P2 OO Jo0 s wN e O
Il
4

*THE DEFAULT IS K3 (ANSI C/ common extensions) *

If this option is not specified, then CodeCheck will assume that
the source code is ANSI C with extensions (-K3). If option -K is
specified with no digit following, then CodeCheck will assume that

CodeCheck Quick Reference Page 6



-LL

the user meant -KO, i.e. strict K&R (1978) C with no extensions.

-L. Make a listing file for the source file or project, with CodeCheck
messages interspersed at appropriate points in the listing. The name
of the listing file should be given immediately after the -L:

check -Lmodule.lst module.c
If no name is specified, CodeCheck will use the name “check.1st”.
The listing file will be created in the current directory, unless a
target directory is specified with the -Q option.

-M List all macro expansions in the listing file. Each line containing
a macro 1s first listed as it is found in the source file, and then listed
a second time with all macros expanded. The -L option is redundant
if -M is specified. If -L is found without -M, then the listing file
created by Code Check will not exhibit macro expansions.

-N Allow nested /* comments */.

-NEST Allow C++ nested classes. When this option is in effect
every union,struct, or class definition constitutes a true scope that
can contain nested tag definitions. Options -K5, -K6 and -K7 imply -
NEST, but -K4 does not. Use -K4 and -NEST if your C++ compiler is
based on AT&T C++ version 3.0. DO *NOT* use -NEST if your C++
compiler is based on any version of C++ earlier than AT&T 3.0.

-O Append all CodeCheck stderr output to the file stderr.out. This
is useful for those operating systems (e.g. MS-DOS) that do not
permit any redirection or piping of stderr output.

-P Show progress of code checking. When this option is given,
CodeCheck will identify each file in the project as it is opened.

-Q Specify an output directory. The pathname for the directory
must follow immediately, e.g.

check -Qusr/myoutput
When this option is specified, CodeCheck will create all of its
output files in the given directory. These output files include the
prototype, listing, and rule object files.

CodeCheck Quick Reference Page 7



R

-R Specify a rule file. The name of the rule file must follow
immediately, e.g. check -Rmyrules mysource.c. The extension “.cc”
on the rule file should be omitted. CodeCheck will look for an up-
to-date object fileof the given name and extension “.cco”. If this is
not found, then CodeCheck will recompile and use the rule file of
the given name.

-S0 Read but do not apply rules to any header files. <===
DEFAULT

-S1 Apply rules to header files given in double quotes.

-S2 Apply rules to header files given in angle brackets.

-S3 Apply rules to ALL header files.

-SQL Enable embedded SQL statements.

-T Create afile of prototypes for all functions defined in a project.
The name of the prototype file should be given immediately after
the -T:

check -Tprotos.h source.c
If no name is specified, CodeCheck will use the name “myprotos.h”.
The prototype file will be created in the current directory, unless a
target directory is specified with the -Q option.

-U Undefine a macro constant. The name of the macro must follow
immediately. Thus check -UMSDOS src.c has the effect of treating
src.c as though it contained the preprocessor directive #undef
MSDOS.

-V Available for users. May be followed by an integer or a name.
-W Available for users. May be followed by an integer or a name.

-X Available for users. May be followed by an integer or a name.

-Y Available for users. May be followed by an integer or a name.

CodeCheck Quick Reference Page 8



-Z

-Z. Suppress cross-module checking. Macro definitions and
variable and function declarations will not be checked for
consistency across the modules of a project.

CodeCheck Quick Reference Page 9



File Name Conventions

The conventions used by CodeCheck for filename
extensions are:

.cc A CodeCheck rule file, containing a set of
rules for compilation by CodeCheck. These
rules are written in a subset of the C
language. CodeCheck requires that this
extension be used for rule filenames, though
it may be omitted in the -R command-line
option.

.cch A CodeCheck header file, for inclusion in a
CodeCheck rule file.

.cco A CodeCheck object file, produced by the
CodeCheck compiler. This file contains a
compilation of the rules found in the rule
file with the same name but extension .cc.

.ccp A project file for CodeCheck. This file
contains a simple list of the filenames of all
of the source modules that comprise a project,
one filename per line. Header files and
libraries should not be listed in this file.

Depending on command line options, the following
optional files may be created by CodeCheck:

check.1lst The default filename for the listing
file (-L option).

myprotos.h The default filename for the prototype
file (-T option).

stderr.out The filename for stderr output (-0
option).

temp. cco The object file created by CodeCheck

when more than one rule file is
specified (-R option).

Default.cco If found this compiled rule file
will be used, by default.

CodeCheck Quick Reference Page 10



Variables and Functions

An alphabetized master list of all CodeCheck variables,
triggers, and functions() follows. See the glossary at
the end of this quick reference card for definitions of
terms used, or see the CodeCheck Reference manual for
detailed descriptions. Variables contain information.
Triggers activate conditional 'if' statements. All
functions that return a pointer (*) are marked.

all digit() 1 if a string consists of only
digits.

all lower() 1 if a string consists of only
lowercase letters.

all upper() 1 if a string consists of only
uppercase letters.

atof () The standard ANSI atof function.
atoi () The standard ANSI atoi function.
class name () Name of current C++ class or
struct.

*cnv_any to bitfield 1 if anything is implicitly
converted to a bitfield.

*cnv_any to ptr 1 if a non-pointer is implicitly
converted to a pointer.

*cnv_bitfield to any 1 if a bitfield is implicitly
converted to anything.

*cnv_const to ptr 1 if a const type is implicitly
converted to a non-const.

*cnv_float to_int 1 if a float is implicitly
converted to an integer.

*cnv_int tofloat 1 if an integer is implicitly
converted to a float.

*cnv_ptr to ptr 1 if a pointer is implicitly
converted to a pointer.

*cnv_signed to_any 1 if a signed integer is
implicitly converted to unsigned.

*cnv_truncate 1 if an integer or float is
implicitly truncated.

conflict file() File in which conflicting

CodeCheck Quick Reference Page 11



conflict line

definition occured. Valid ONLY when dcl conflict or
pp macro conflict is triggered.

conflict line Line on which conflicting
definition occured. Valid ONLY when dcl conflict or
pp macro conflict is triggered.

corr (x,y) Float correlation between
statistics x and y.

*dcl 3dots 1 when an ellipsis (...) is found
in a declaration.

*dcl_abstract 1 when an abstract declarator is
encountered.

dcl access 0 when a C++ member has public
access,

1 when a C++ member has protected

access,
2 when a C++ member has private

access.

*decl aggr 1 when an aggregate type is

declared.

*dcl _all upper 1 when a declarator name is all

uppercase.

*dcl ambig See CodeCheck Reference Manual.

*dcl any upper 1 when a declarator name has any

uppercase letters.

dcl _array dim() If the specified level of this

declarator is an array,then this function returns the

array dimension (-1 i1if no size is given).

dcl _array size Total size of a declared array, -1

if no size is given, product of dimensions if the array
is multidimensional.

*dcl _auto_init 1 when an auto variable is
initialized.

dcl base Base type of the declaration. For
values see manifest constant section.

dcl base root Type from which the type of

dcl base is derived from. If the type of dcl base is
not a user-defined type, dcl base root has same value
as dcl base.

dcl base name() The base type of the current
declarator, as a string.

dcl base name root()The name of type from which type of

CodeCheck Quick Reference Page 12



dcl count

dcl base name is derived. If the type of dcl base name
is not a user-defined type, dcl base name root ()
returns the same value as dcl base name().

*dcl bitfield 1 when a bitfield is declared.
*dcl bitfield anon 1 when a bitfield has no name.
*dcl bitfield arith 1 when a bitfield width requires
arithmetic calculation.

dcl bitfield size Size in bits of the specified
bitfield.

*dcl conflict 1 when an identifier was declared
differently elsewhere. Use conflict file() and
conflict line for location.

dcl count Index of declarator within the
current declaration list.

*decl cv_modifier 1 when const or volatile is used
as a non ANSI modifier.

*dcl definition 1 when a declaration is a
definition, not a reference.

dcl _empty 1 when an empty declaration is
found (no declarator).

*dcl enum 1 when an enumerated constant is
found.

*dcl enum hidden 1 when a declarator name hides an
enumerated constant.

dcl explicit 1 when a declarator has specifier
"explicit".

*dcl extern 1 when “extern” is explicitly
specified.

*dcl extern ambig See documentation.

dcl first upper Number of initial uppercase letters
in declarator name.

*dcl friend 1 when a C++ friend is declared.
*dcl from macro 1 when declarator name is derived
from a macro expansion.

*dcl function 1 when a function or function

typedef name is declared.
dcl function_ flags Inclusive OR of the following
conditions:

1 when this function is inline,
(C++)

2 when this function is virtual,

CodeCheck Quick Reference Page 13



dcl_function_ptr

(C++

4 when this function is pure,
(C++)

8 when this function is pascal,
(DOS, 0S/2, Mac)

16 when this function is cdecl,
(DOS & 0S/2)

32 when this function is
interrupt, (DOS & 0S/2)

64 when this function is loadds,

(DOS & 0S/2)
128 when this function is saveregs,
(DOS & 0S/2)
256 when this function is fastcall.
(DOS & 0S/2)
*dcl function ptr 1 when a pointer to a function is
declared.
*dcl global 1 when a variable or function has
file scope.
*dcl hidden 1 when a local identifier hides
another identifier.
*dcl Hungarian 1 when a declarator name uses the
Hungarian convention.
dcl ident length Number of characters in declared
identifier name.
*dcl init arith 1 when an initializer uses
arithmetic.
*dcl initializer 1 when an initializer is found.
*dcl inline 1 when a C++ function is inline.

*dcl label overload 1 when a declarator name matches a
label name.

dcl level() See documentation.

dcl level flags() See documentation.

dcl levels See documentation.

*dcl local 1 when a local identifier is
declared.

*dcl long float 1 when a variable is declared
“long float”.

dcl member 1 a union member identifier

2 a struct member identifier
3 a class member identifier

CodeCheck Quick Reference Page 14



dcl parm _count

dcl mutable 1 when an indentifier is declared
'mutable’.

dcl name () Current declarator name.

*dcl need 3dots 1 when a parameter list concludes
with a comma.

*dcl no prototype 1 when a function definition has
no prototype in scope.

*dcl no_specifier 1 when a declaration has no type
specifiers at all.

*dcl not declared 1 when an old-style function
parameter is not declared.

*dcl oldstyle 1 when an old-style (unprototyped)
function is declared.

dcl parameter Index of function parameter (1 for
first, etc.).

dcl parm count Number of formal parameters in a
function definition.

*dcl parm hidden 1 if a function parameter is
hidden by a local variable.

*dcl pure 1 when a C++ pure member function
is declared.

dcl scope name () scope name of current declarator.
*dcl simple 1 when simple variable (not
pointer or array) 1is declared.

*dcl signed 1 when the “signed” type specifier
is explicitly used.

*dcl static 1 when a declarator is static.
*dcl storage first 1 when a storage class specifier
is preceded by a type specifier in a declaration.

dcl storage flags Set to an integer which identifies
the storage class. See manifest constant section.

*dcl tag def 1 when a tag is defined as part of
a type specifier.

dcl template Number of C++ function template
parameters.

*dcl type before 1 when the return type of a

function definition is on the line BEFORE the line with
the function name.

*dcl typedef 1 when a typedef name is declared.
*dcl typedef dup 1 when a duplicate typedef name is
declared.

CodeCheck Quick Reference Page 15



eprintf()

dcl underscore Number of leading underscores in
declarator name.

*dcl union bits 1 when a bitfield is declared as a
member of a union.

*dcl union_init 1 when a union has an initializer.
*dcl unsigned 1 when a declarator is unsigned.
*dcl variable 1 when a variable (not a function)
is declared.

*dcl virtual 1 when a member function is
declared virtual.

dcl zero_array 1 when an array has zero length.
define (name,body) Define a macro with given name and

body. Both the name and body must be strings. The macro
may not have arguments.

eprintf () the same as function fprintf except
output to stderr.

exit (n) Quit CodeCheck with return value n.
*exp empty initializer 1 when an empty initializer
*exp not ansi 1 when a non-ANSI expression is
found.

exp operands Number of operands in the current
expression.

exp operators Number of operators in the current
expression.

exp tokens Number of tokens in the current
expression.

err message () Returns the message body of warning
message numbered as CXXXX.

err syntax Set to an integer when CodeCheck

encounters a syntax error which is CXXXX. The value of
the integer is 1 greater than the value XXXX.

fatal(n,str) Issue fatal error #n with message
str.

fclose() CodeCheck version of the standard C
function fclose.

fen aggr * Number of local aggregate variables
declared in function.

fen array * Total number of local array
elements declared in function.

*fcn begin 1 when a function definition

begins (open brace).

CodeCheck Quick Reference Page 16



fcn. members

fcn _com lines * Number of
a function.

fcn _decisions * Number of
a function.

*fcn _end 1 at the
definition (close brace).

fcn _exec lines * Number of
executable code.

fcn H operands * Number of
function.

fcn H operators * Number of
function.

fen high * Number of
a function.

fcn locals * Number of
in a function.

fen low * Number of
function.

fcn _members * Number of

class members in function.
*fcn no _header
no comment block.
fcn _name ()

fcn _nonexec * Number
in a function.

fcn operands * Number
fcn operators * Number

fcn register Number
declared in a function.
fen simple

declared in a function.

* Number

fcn tokens * Number
function.

fcen total lines * Number
definition.

fen u operands * Number
function.

fen u operators * Number
function.

fcn uH operands * Number

in a function.

of

of

of

of

of

of

of

of

of

of

pure comment lines within
binary decision points in
end of function

lines in function with
Halstead operands in a
Halstead operators in
high-level statements in
local variables declared
low-level statements in a

local union, struct &

1 when a function definition has

Name of current function.

non-executable statements
operands in a function.
operators in a function.
register variables

local simple variables
tokens found in a

lines in the function
unique operands in a

unique operators in a

unique Halstead operands

CodeCheck Quick Reference Page 17



idn_array_dim()

fen uH operators * Number of unique Halstead operators
in a function.

fen unused * Number of unused variables in a
function.

fcn white lines * Number of lines of whitespace in a
function.

file name() Name of the current source or
header file.

fopen () Standard C function fopen.

force include() Specify a file to be included as
header file at the beginning of each module.

fprintf () Standard C function fprintf.

fscanf () Standard C function fscanf.

header name() Name of the header that is about to
be #included.

header path() Path to the header that is about to
be #included.

histogram() See documentation.

idn_array dim() If the specified level of this
identifier is an array,then this function returns the
array dimension (-1 if no size is given).

idn base Set to the base type of the
identifier. See manifest constant section.

idn base name() The base type of the identifier, as
a string.

*idn bitfield 1 if the identifier is a bitfield.
*idn constant 1 if this identifier is an enum
constant.

idn filename() The file in which the identifier
was declared.

*idn function 1 if this identifier is a function
name.

*idn global 1 if this identifier has file
scope and external linkage.

idn_level() See TechNote #14 and manual.

idn level flags() See TechNote #14.

idn levels See TechNote #14.

idn line Set to the line number within the
file in which this identifier was declared.

*idn local 1 if this identifier has local
scope.

CodeCheck Quick Reference Page 18



included(filename)

*idn member 1 if this identifier has class
scope.

idn name() The name of the identifier, as a
string.

*idn no prototype 1 if this is a function call with
no prototype.

*idn not declared 1 if this is a function call with
no declaration.

*idn parameter 1 if this identifier is a function
parameter.

idn_storage flags Set to an integer which identifies

the storage class of the identifier. For values of the
flags, see manifest constant section.

*idn variable 1 if this identifier is a
variable.

identifier (name) Triggers whenever the named
identifier is used.

ignore (name) Instructs CodeCheck to ignore the

named token.
*included (filename) 1 if the argument header file has
been included.

*isalpha (int) 1 if the argument is an alphabetic
character (a-z or A-7).

*isdigit(int) 1 if the argument is a decimal
digit character (0-9).

*islower (int) 1 if the argument is a lowercase
alphabetic character.

*isupper (int) 1 if the argument is an uppercase
alphabetic character.

*keyword (name) Triggers whenever the named
keyword is used.

lex ansi_escape Set to ‘a’, ‘v’, or ‘?',

respectively, when \a, \v, or \? is found within a
string or character literal.

*lex assembler 1 when assembler code is detected.
*lex backslash 1 when a line is continued with a
backslash character.

lex bad call Difference between number of actual

arguments and number of formal arguments when a macro
function is expanded.
lex big octal 8 when the digit 8 is found in an

CodeCheck Quick Reference Page 19



lex hex escape

octal constant,
9 when the digit 8 is found in an
octal constant.

lex c _comment 1 when comment is C /* */
lex char empty 1 when the empty character
constant is found (‘).
lex char long 1 when a character constant is
longer than one character.
lex constant 1 when an enumerated constant
2 when a character constant
3 when an integer constant
4 when a float constant is found,
5 when a string constant is found.
lex cpp comment 1 when comment is C++ //
lex enum comma 1 when a list of enumerated
constants ends with a comma.
lex float 1 when a numeric constant has the
suffix f or F.
lex hex escape Set to the number of hex digits
read when a hexadecimal escape sequence (e.g. ‘\x1A’)
is found.
lex initializer 1 when an initializer is the

integer zero,

2 when an initializer is a nonzero
integer,

3 when an initializer is a
character literal,

4 when an initializer is a float or
double constant,

5 when an initializer is a string,
and

6 when an initializer is anything
else.
lex intrinsic 1 when an intrinsic (built-in)
function is called.
lex invisible 1 when a C++ nested tag name is
used without a scope.
lex key no_space 1 when certain keywords are not
followed by whitespace.
lex keyword 1 when the current token is a

reserved keyword.

CodeCheck Quick Reference Page 20



lex lc_long

lex lc long 1 when a numeric constant has
suffix lowercase el

lex long float 1 when a float constant has suffix
L or 1.

lex macro 1 when a macro is about to expand.
lex macro_token 1 when a token originates from a
macro expansion.

lex metaware 1 when any Metaware lexical
extension is found.

lex nested comment 1 when a /*..*/ comment is found
nested within another.

lex nl eof 1 when a nonempty source file does
not end with a newline.

lex nonstandard 1 when a character not in the
standard C set is found.

lex not KR escape 1 when an escape character is not
in the K&R (1978) set.

lex not manifest 1 when a number other than 0 or 1
is not a macro.

lex null arg 1 when an argument is omitted from
a macro function call.

lex num escape Set to the numeric value when an
escape sequence is found.

lex punct after 1 when a comma or semicolon is not
followed by whitespace.

lex punct before 1 when a comma or semicolon is
preceded by whitespace.

lex radix Radix of an integer constant (2, 8,
10, or 16).

lex str concat 1 when two strings are separated
only by whitespace.

lex str length Length of a string literal (not
counting terminal zero).

lex str macro 1 when a macro name is found within
a string literal.

lex str trigraph 1 when a trigraph is found within a
string literal.

lex suffix 1 when a numeric constant has a
letter suffix.

lex token Index of the token in the current
line (1 = first token).

CodeCheck Quick Reference Page 21



lin_has label

*lex trigraph 1 when an ANSI trigraph is found.
*lex unsigned 1 when a numeric constant has the
U or u suffix.

*lex wide 1 when a string or character
constant has the L prefix.

lex zero_escape 1 when an escape sequence in a

character literal is zero,
2 when the escape sequence is in a
string literal.

*lin continuation 1 when an expression is continued
from the previous line.

*lin continues 1 when an expression is continued
on the next line.

lin decl count Number of declarator names on the
current line.

lin depth Depth of #include file nesting for
the current line.

*lin end 1 when the end of a line is found.
*1lin has code 1 when a line contains code of any
sort.

*lin has comment 1 when a line contains a nonempty
comment material.

lin has label 1 when a line contains a label.

lin include kind 1 if the line includes a project

header by #include.

2 if the line includes a system
header by #include.
lin include name() Name of the header file included in
this line.

lin header 1 if the line comes from a project
header,

2 if it comes from a system header.
lin indent space Number of spaces before the first
nonwhite character.
lin indent tab Number of tabs before the first
nonwhite character.
lin is_ comment 1 when a line contains only comment
material.
lin is exec 1 when a line contains executable
code.
lin is white 1 when a line is only whitespace or

CodeCheck Quick Reference Page 22



lin within class

empty comment.

lin length Length of the line in characters,
not counting newline.
lin nest level The statement nesting (indentation)

level. See option -B.
lin nested comment 1 when a /*..*/ comment is found
nested within another.

lin new_comment 1 when a // comment is found.

lin number Index of the current line within
the current file.

lin operands Number of operands found on the
current line.

lin operators Number of operators found on the
current line.

lin preprocessor 1 if the current line begins with
#.

lin source 1 if it is not from a header file.
lin suppressed 1 if it is suppressed by the
preprocessor.

lin tokens Number of tokens on the current
line.

lin within class 1 when the current line is within a

class definition,

2 when it is in a member function
but outside the class.
*lin within function 1 if the current line is within a
function definition.
lin within tag 1 if the current line is within an
enumeration,

2 if it is within a union

3 if it is within a struct

4 1if it is within a class

line () The current line (as far as it has
been parsed).

log2 () The logarithm base 2 of the
argument.

macro (name) Triggers when the specified macro
is about to be expanded.

*macro_defined() 1 if a specified macro has been
defined.

maximumnm (x) The maximum value of a statistical

CodeCheck Quick Reference Page 23



mod_com _lines

variable.

mean (x) The mean of a statistical wvariable.
median (x) The median of a statistical
variable.

minimum (x) The minimum value of a statistical
variable.

mod_aggr * Number of global array, union,
struct, or class variables.

mod_array * Number of global array elements
declared in a module.

*mod_begin Triggers at the beginning of a
module.

mod_class_lines() Total number of lines in a classes,

structs, and unions defined in a module, including
member function lines.

mod_class_name () Name of each class, struct, or
union defined in a module.

mod_class_tokens() Total number of tokens used in
class, struct, and union definitions in a module,
including member function tokens.

mod_classes Number of named classes, structs, &
unions defined in a module (includes template classes).
mod _com_lines * Number of nonempty comment lines in
a module.

mod_decisions * Number of binary decision points in
a module.

*mod_end Triggers at the end of a module.
mod_exec_lines * Number of lines in module with
executable code.

mod_extern * Number of global variables declared
with extern keyword.

mod_functions * Number of functions defined in a
module.

mod_globals * Number of global variables declared
in a module.

mod H operands * Number of Halstead operands in a
module.

mod H operators * Number of Halstead operators in a
module.

mod_high * Number of high-level statements
found in a module.

mod_low * Number of low-level statements

CodeCheck Quick Reference Page 24



mod_uH_operands

found in a module.

mod macros Number of macros defined in a
module.

mod_members * Number of union, struct, or class
members declared.

mod name () Name of the current module.

mod nonexec * Number of non-executable statements
in a module.

mod operands * Total number of operands used in a
module.

mod_operators * Total number of operators used in a
module.

mod simple * Number of local simple variables
defined in a module.

mod static * Number of static global variables
defined in a module.

mod_tokens * Number of tokens found in a module.
mod total lines * Total number of lines in a module.
mod u_ operands * Number of unique operands used in a
module.

mod u operators * Number of unique operators used in
a module.

mod uH operands * Number of unique Halstead operands

in a module.
mod uH operators * Number of unique Halstead operators
in a module.

mod unused * Number of static global variables
declared but not used.

mod warnings Number of warnings issued by
CodeCheck for a module.

mod white lines * Number of white and empty comment
lines in a module.

mode (x) The mode (most common value) of a
statistical variable.

ncases (x) The number of cases recorded in a
statistical variable.

next char() The lookahead character at the
currently parsed position.

new_type () Create new intrinsic type
specifiers. See reference manual.

no_undef (name) 1 if the argument has not been

CodeCheck Quick Reference Page 25



op_bit_and
previously #undefined.

All following op variables are triggers.

op_add + the binary addition operator
(NOT the unary plus).

op_add assign += the add-assign operator.
op_address & the address-of operator.
op_and assign &= the bitwise-and-assign
operator.

op_array dim() If the specified level of the
specified operand is an array, then this function
returns the array dimension (-1 if no size is given).
op_arrow -> the indirect member selector
operator.

op_assign = the assignment operator.
op_assoc => the Metaware association-
operator.

op base () See TechNote #14.

op_base name() See TechNote #14 and manual
op_based :> the Microsoft based operator.
op bit and & the bitwise-and operator.

op bit not ~ the bitwise-complement
operator.

op bit or | the bitwise-inclusive-or
operator.

op bit xor " the bitwise-exclusive-or
operator.

op bitfield(3j) 1 if operand j is a bitfield.

op bitwise Any bitwise operator is used.
op_break The “break” keyword.

op_call The function-call operator.
op _cast Any cast operator (including
C++ function-like casts).

op _cast to ptr A cast-to-pointer in the form
(Type *).

op_catch Trigger on the "catch" keyword.
op_close angle > the right angle bracket, used
as a C++ template delimiter.

op_close brace } the right curly brace.

CodeCheck Quick Reference Page 26



op_executable

op_close bracket ] the right square bracket.
op_close funargs ) the end-argument-1list
parenthesis.

op_close paren ) the right parenthesis.
op_close subscript | the end-of-subscript operator.
op_colon 1 : the unary colon (e.g. after a
label) .

op_colon 2 : the binary colon (e.g. in a
conditional expression).

op_comma , the comma operator (NOT the
comma separator).

op_cond ?: the conditional operator.
op_continue The “continue” keyword.
op_declarator Any operator found within a
declaration.

op_delete The C++ delete operator.
op_destroy ~ the C++ destructor symbol.
op_div / the division operator.
op_div_assign /= the divide-assign operator.
op_do The “do” keyword.

op_else The “else” keyword

op_equal == the equality-test operator.
op_executable Any operator found within
executable code.

op_for The “for” keyword.
op_function() The name of a function called
or declared.

op_goto The “goto” keyword.

op_high Any high-precedence operator.
op if The “if” keyword.

op_indirect * the indirection operator (NOT
the declarator symbol).

op_infix Any infix operator.

op_init = the initialization operator.
op_iterator -> the Metaware iterator-
definition operator.

op_iterator call <- the Metaware iterator-call
operator.

op_keyword Any executable keyword.
op_left assign <<= the shift-left-assign operator.
op_left shift << the shift-left operator.

CodeCheck Quick Reference Page 27



op_more_eq

<

op_less the less-than operator.
op_less _eq <= the less-than-or-equal-to
operator.

op_level() See TechNote #14 and manual.
op_level flags() See TechNote #14.

op_levels() See TechNote #14.

op_log and && the logical-and operator.
op_log not ! the logical-negation operator.
op_log or ||  the logical-or operator.
op_low Any low-precedence operator.
op_macro () The name of the macro function
about to be expanded.

op_macro_call ( the macro-function-expand
operator.

op_medium Any operator that is neither
low- nor high-precedence.

op_member . the member-of operator.
op_memptr ->* the C++ member-pointer
operator.

op_memsel .* the C++ member-selector
operator.

op_more > the greater-than operator.
op_more_eq >= the greater-than-or-equal-to
operator.

op_mul * the multiplication operator.
op_mul assign *= the multiply-assign operator.
op_negate - the unary negation operator
(NOT subtraction).

op_new The C++ new operator.

op_not eq !=  the not-equal-to operator.
op_open_angle < the left angle bracket, used as
a C++ template delimiter.

op_open_brace { the left curly brace.
op_open_bracket [ the left square bracket.
op_open_funargs ( the function-argument-1list

parenthesis. Use op declarator to determine whether the
context is a function declaration or a function call.

Oop_open_paren ( the left parenthesis.
op_operands The number of operands used by
an executable operator.

op_or_assign |= the bitwise-or-assign operator.

op_parened operand()1l if the specified operand is in

CodeCheck Quick Reference Page 28



Op_separator

parentheses.

op_plus + the unary plus operator (NOT
addition).

op_pointer * the pointer-to declaration
operator (NOT indirection).

op_post _decr — the post-decrement operator.
op_post_inecr ++ the post-increment operator.
op_postfix Any postfix operaotr.

op_pre decr — the pre-decrement operator.
op_pre incr ++ the pre-increment operator.
op_prefix Any prefix operator.

op_punct Any punctuation operator.
op_reference & the C++ reference-to
declaration operator.

op_rem % the remainder operator.
op_rem assign %= the remainder-assign operator.
op_return The “return” keyword.
op_right assign >>= the right-shift-assign
operator.

op_right shift >> the right-shift operator.
op_scope ::  the C++ scope operator.
op_semicolon ; the semicolon.

op_separator , the comma separator (NOT the
comma operator) .

op_sizeof The sizeof operator.
op_space_ after An operator is followed by a
space character.

op_space before An operator is preceded by a
space character.

op_sub assign -= the subtract-assign operator.
op_subscript the subscript operator.
op_subt - the binary subtraction operator
( NOT unary negation ).

op_switch The “switch” keyword.
op_throw Trigger on the "throw" keyword.
op_try The "try" keyword.

op while 1 The “while” keyword (unless
part of do-while).

op _while 2 The “while” keyword when used
with “do”.

op _white after An operator is followed by

CodeCheck Quick Reference Page 29



option

whitespace.

op_white before An operator is preceded by
whitespace.

op_xor assign ~= the exclusive-or-assign
operator.

option( char c ) 1 if the command-line option -c is

in effect

The previous op_ variables were triggers.

pow(x,y) Standard ANSI C pow function.
pp_ansi 1 whenever a new ANSI preprocessor
feature is encountered.

pp_arg_count Number of formal parameters in a
macro definition.

pp_arg multiple 1 if a formal parameter is used
more than once.

pPp_arg _paren 1 if a formal parameter is not
enclosed in parentheses.

pp_arg string 1 if a formal parameter is found
within a string.

pp_arith 1 if a conditional requires an
arithmetic calculation.

pp_assign 1 if a macro definition is a simple
assignment.

pp_bad white 1 if a whitespace character is
neither a space nor a tab.

pp_benign 1 if a macro is redefined
equivalently.

pp_comment 1 if two tokens in a macro are
separated by a comment.

pp_const 1 if a macro is a manifest
constant.

pp_defined 1 if the “defined” preprocessor
function is found.

pp_depend 1 if #undef is used on a macro
required by another macro.

pp_elif 1 if the #elif directive is found.
pp_empty arglist 1 if a macro function definition
has no parameters.

pp_empty body 1 if the definition of a macro has

CodeCheck Quick Reference Page 30



pp_error_severity

no body.

pp_endif 1 if the #endif directive is found.
pp_error 1 if the #error directive is found.
pp_error_severity() Control the leniency of #error
directives - Fatal or Informational.

pp_if depth Depth whenever a conditional (e.g.
#1f) 1is activated.

pp include 1 if #include pathname is in “”,

from a macro expansion,

2 if #include pathname is in %7,
not from a macro,

3 if #include pathname is in <>,
from a macro expansion,

4 if #include pathname is in <>,
not from a macro,

5 if #include pathname is not
enclosed (Metaware only).

6 if #include filename is not
enclosed (Vax VMS only).

pp_include depth Depth of inclusion when an #include
is performed.

*pp_include white 1 if pathname in an #include has
leading whitespace.

*pp_keyword 1 if a macro name is a reserved
ANST or C++ keyword.

*pp_length Length in characters of macro body
(excluding whitespace) .

*pp_lowercase 1 if a macro name has any
lowercase letters.

*pp_macro Length in characters of a macro
name.

*pp_macro_conflict 1 when a macro was defined
differently elsewhere. Use conflict file() and
conflict line for location.

*pp_macro_dup 1 if a macro is defined in more
than one file.

pp_name () Name of the macro currently being
defined.

*pp_not_ ansi 1 if any non-ANSI preprocessor
usage 1is found.

*pp_not_defined 1 if a conditional uses an

undefined identifier.

CodeCheck Quick Reference Page 31



pp_overload

*pp_not found
found.
pp_overload

1 if an #include file could not be

1 if a declared identifier matches

a macro function name.

pPp_paste
is found.

pp_paste failed

1 if the ANSI paste operator (##)

1 if a the operands for ## could

not be pasted together.

pPp_pragma
pp_recursive

is found.
pp_relative

1 if a #pragma directive is found.
1 if a recursive macro definition

1 if an #include in a header file

uses a relative pathname.

pp_semicolon
semicolon.
pp_sizeof

1 if a macro definition ends with a

1 if a directive requires

evaluating a “sizeof”.

pPp stack

1 if a macro is redefined within a

module (except benign).

pp_stringize
(#) is found.
pp_sub_ keyword
macro name.
pp_trailer

nonwhite characters.

pp undef

pp_unknown

CodeCheck is found.

pp_unstack

1 if the ANSI stringize operator
1 if a directive name is itself a
1 if a directive line ends with any

1 if an #undef directive is found.
1 if a directive unknown to

1 1if an #undef 1is used to unstack

multiply-defined macros.

pp_white after

the # character.

pp_white before

the # character.

pragma ()
is encountered.
prefix ()
prev_token()
string) .
printf ()
prj_aggr

Length of whitespace that precedes
Length of whitespace that follows
Triggers when the specified pragma

See documentation.
The previous lexical token (as a

The standard ANSI printf function.
Number of external array, union,

struct, class variables.

CodeCheck Quick Reference Page 32



prj_array

in a project.
prj_begin
project.
prj_com lines
a project.
prj_conflicts

prj_decisions

a project.
prj_end
prj_exec lines
executable code.
prj_functions
project.
prj_globals

prj_begin

Number of external array elements

Triggers at the beginning of a

Number of nonempty comment lines in

Number of conflicting macro
definitions in a project.
Number of binary decision points in

Triggers at the end of a project.

Number

Number

Number

defined in a project.

prj_H operands
project.

prj_H operators
project.
prj_headers

read in a project.
prj_high

found in a project.

prj_low

found in a project.

prj_macros

in a project.
prj_members
or class members.
prj_modules
project.
prj_name()
prj_nonexec
in a project.
prj_operands
project.
prj_operators
project.
prj_simple

Number

Number

Number

Number

Number

Number

Number

Number

of

of

of

of

of

of

of

of

of

of

of

line in project with
functions defined in a
external variables
Halstead operands in a
Halstead operators in a
distinct header files
high-level statements
low-level statements
distinct macros defined
external union, struct,

source modules in a

Name of the current project file
Number of non-executable statements

Number of operands found in a

Number of operators found in a

Number of external global variables

CodeCheck Quick Reference Page 33



prj_total lines

defined in a project.

prj_tokens Number of lexical tokens found in a
project.

prj_total lines Number of lines in a project.
prj_u_operands Number of unique operands in a
project.

prj_u operators Number of unique operators in a
project.

prj_uH_operands Number of unique Halstead operands
in a project.

prj_uH_operators Number of unique Halstead operators
in a project.

prj_unused Number of unused external variables
in a project.

prj_warnings Number of CodeCheck warnings issued
for a project.

prj_white lines Number of white and empty comment
lines in a project.

quantile() Returns the specified quantile of a
statistical variable.

remove path () Remove the least recently set
including path from searching list.

reset () Deletes all cases recorded in a
statistical variable.

root () Current declarator name after
prefixes have been removed.

scanf () Standard ANSI C scanf function.

set_header optS() Set option -S for specified file
overriding the option -S set globally.

set_option() Sets the specified command-line
integer option.

set_str_option() Sets the specified command-line
string option.

sprintf () The standard ANSI sprintf function.
skip macro_ops() Control if op variables applicable

on operators derived from macro expansion.
skip nonansi indent()Control if ignore identifier

starting with characters ‘@', ‘$’ or ‘''.

sqgrt () Standard ANSI C square-root
function.

sscanf () The ANSI stdlib sscanf () function.
stdev () Standard deviation of a statistical

CodeCheck Quick Reference Page 34



stm_array

variable.

stm_aggr Number of array, union, struct,
class variables declared.

stm_array Number of local array elements
declared.

*stm bad label 1 if a label is not attached to
any statement.

stm_cases Number of case or default labels on
this statement.

stm_catchs Number of handlers (catches) in a
try-block.

stm_container Set to a value which indicates the

kind of high-level statement that contains the current
statement. See stm kind (below) for the possible
values.

stm_cp_assign Number of compound assignment
operators.
stm_cp begin At the open curly brace of a

compound statement, this variable is set to a value
that indicates the kind of statement that contains the
compound statement. See stm kind (below) for the
possible values.

stm_depth Nesting depth of a statement within
other statements.

*stm_end Triggers at the end of any
statement.

*stm end tryblock 1 if the closing brace is found of
the last catch of a try-block.

*stm goto 1 if a goto enters a block with
auto initializers.

*stm if else 1 if an if statement has a
matching else statement.

*stm_is comp Set to the same value as

stm cp begin, at the END of a compound statement (the
close curly brace).

*stm is expr 1 if a statement is an expression.
*stm is high 1 if a statement is compound,
selection, or iteration.

*stm is iter 1 if a statement is a for, while,
or do-while.

*stm is jump 1 if a statement is a goto,

CodeCheck Quick Reference Page 35



stm 1S nonexec

continue, break, or return.

*stm _is low 1 if a statement is an expression
or jump statement.
*stm_is nonexec 1 if a statement is not executable
(i.e. a declaration).
*stm_is select 1 if a statement is an if, if-
else, or switch.
stm_kind 1 for an “if” statement,

2 for an “else” statement,

3 for a “while” statement,

4 for a “do” statement,

5 for a “for” statement,

6 for a “switch” statement,

7 for a “function” compound

statement,
8 for a compound statement,
9 for an expression statement,

10 for a break statement,

11 for a continue statement,

12 for a return statement,

13 for a goto statement,

14 for a declaration statement,

15 for an empty statement.
stm_labels Number of ordinary labels (not case
or default labels)

attached to this statement.
stm_lines Number of lines in the current
statement,including blank lines that precede the first
token of the statement.

stm_locals Number of local variables declared
in a block.

*stm loop back 1 if a goto statement jumps
backward.

stm_members Number of local union, struct, or
class members declared.

*stm need comp 1 if the statement contained by if,

else, for , while and do is not a compound statement.
*stm never_caught 1 if a handler( catch ) will never
be reached.

*stm no_break 1 if the previous statement is a
case with no jump.
*stm no_default 1 if a switch statement has no

CodeCheck Quick Reference Page 36



stm_operands

default case.

*stm no_init 1 if a variable is used before it
has been initialized. Note: this variable does not yet
work on C++ code.

stm_operands Total number of operands found in a
statement.

stm_operators Total number of C operators found
in a statement.

stm_relation Number of Boolean relational
operators in a statement.

stm_return paren 1 if return has a value NOT
enclosed in parentheses.

stm_return void 1 if return value conflicts with
the function declaration.

stm_semicolon 1 if a suspicious semicolon is
found (e.g. while(x); ).

stm_simple Number of local simple variables
declared in a block.

stm_switch cases Number of cases found in the
current switch statement.

stm_tokens Number of lexical tokens found in a
statement.

stm_unused Number of unused local variables in

a block. Use function stm unused name (k) for their
names (0<=k<stm unused).

stm_unused name () Returns name of the given unused
variable in the block.

strcat () Standard ANSI C strcat () function.
strchr () Standard ANSI C strchr() function.
strcmp () Standard ANSI C strcmp() function.
strcpy () Standard ANSI C strcpy() function.
strespn () Standard ANSI C strcspn() function.
strequiv () 1 if one string is the same (except
for case) as another.

strlen() Standard ANSI C strlen() function.
strncat () Standard ANSI strncat function.
strncmp () Standard ANSI strncmp function.
strncpy () Standard ANSI strncpy function.
str_option() Returns string value of the
specified command-line option.

strpbrk () Standard ANSI strpbrk function.
strrchr () Standard ANSI strrchr function.

CodeCheck Quick Reference Page 37



suffix

strspn ()
strstr()
suffix ()
documentation.
*tag abstract
class.

*tag anonymous
is defined.

*tag base access

Standard ANSI strspn function.

Standard ANSI C strstr function.

Similar to the prefix function. See
1 when this is a C++ anonymous

1 when an anonymous (unnamed) tag

1 when a base class does not have

an explicit access specifier (public, protected, or

private).
tag bases
tag.

Number of C++ base classes for this

tag baseclass access() The access specifier of a
specified base class.

tag baseclass kind()

base class.

The tag kind of a specpfied

2 for a union
3 for a struct
4 for a class

tag baseclass name() The name of a specified base

class.
*tag begin
tag classes

within this class.
tag components ()

tag_constants

1 when a tag definition begins.
Number of named classes nested

See documentation.
Number of enumerated constants

defined in this class.

tag_constructors

this class.
tag distance

*tag end

tag fen friends

in this class.
tag friends

in this class.
tag functions
in this class.

Number of constructors declared in

1 for a near tag, (Borland C++)

2 for a far tag, (Borland C++)

3 for a huge tag, Borland C++)

4 for an export tag. (Borland C++)
1 when a tag definition ends.

Number of friend functions declared

Number of friend classes declared

Number of member functions declared

CodeCheck Quick Reference Page 38



*tag global
*tag has assign
operator={().
tag _has copy
constructor.
tag _has default
constructor.
tag has destr
destructor.

tag _hidden

tag.

tag kind

tag lines
definition.
tag local

tag has copy

1 if this tag has file scope.
1 if this C++ class has an

1 if this C++ class has a copy

1 if this C++ class has a default
1 if this C++ class has a

1 when a local tag hides another

for an enum,

for a union,
a struct,

a class.

for

=W N

for
Number of lines in the tag

1 if this tag has local scope

(within a function).

tag mem access

does not have an access label

private) .
tag members
this class.
*tag name()
current tag.
*tag nested

1 if the first member of this class
(public, protected,

or
Number of data members defined in

Returns the tag name for the

1 if this tag definition is nested

within another tag.

tag _operators
declared in this
tag private
private access.
tag protected

protected access.

tag public
public access.
tag static _fen
declared in this
tag static mem
declared in this
tag_template

Number of operator functions

class.

Number of identifiers declared with

Number of identifiers declared with

Number of identifiers declared with

Number of static member functions

class.
Number of static data member

class.

of

Number template parameters.

CodeCheck Quick Reference Page 39



tag types

tag_tokens Number of tokens in this tag
definition.

tag_types Number of typedef names defined in
this class.

test needed() Triggers if any of the specified

functions is called without a validity test immediately
following. Normally used to verify that return wvalue
from malloc () was tested.

token () Returns current lexical token as a
string.

undefine () Undefines the specified macro.
variance () Variance of a statistical variable.
warn () Generates a warning message.

CodeCheck Quick Reference Page 40



CodeCheck Manifest
Constants

This section defines manifest constants for the
following CodeCheck variables and functions:

dcl base

dcl base root

dcl function flags
dcl level()

dcl level flags()
dcl storage flags
lin header

lin include kind
lin preprocessor
lin within tag
op_base()
op_level()
op_level flags()
pp_error_ severity()
stm_container
stm_cp begin
stm_is comp

stm _kind

tag kind

The values of lex constant:

#define CONST BOOL 1
#define CONST ENUM 2
#define CONST CHAR 3
fdefine CONST_ INTEGER 4
#define CONST FLOAT 5
#define CONST STRING 6

This values of lex initializer:

#define INIT ZERO 1
fdefine INIT INTEGER 2
#define INIT BOOL 3
#define INIT CHAR 4

CodeCheck Quick Reference Page 41



#define
#define
#define

#define VOID TYPE 1

#define BOOL_ TYPE 2

#define CHAR TYPE 3

#define SHORT TYPE 4

#define WCHAR TYPE 5

#define INT TYPE 6

#define LONG TYPE 7

#define LONG_LONG TYPE 8

#define EXTRA INT TYPE 9

#define UCHAR TYPE 10 // unsigned char
#define USHORT TYPE 11 // unsigned short
#define UINT TYPE 12 // unsigned int
#define ULONG TYPE 13 // unsigned long
#define EXTRA UINT TYPE 14 // non-standard
#define FLOAT TYPE 15

#define SHORT DOUBLE TYPE 16

#define DOUBLE TYPE 17

#define LONG_DOUBLE TYPE 18

#define INT8 TYPE 19

// __int8,  intlé,  int32 and  int64 are types of
// IBM, Borland, & Microsoft C++.

#define INT16 TYPE 20 // non-standard
#define INT32 TYPE 21

#define INT64 TYPE 22

#define EXTRA FLOAT TYPE 23

#define ENUM TYPE 24

#define UNION TYPE 25

#define STRUCT TYPE 26

#define CLASS TYPE 27

#define DEFINED TYPE 28

#define EXTRA PTR TYPE 29

CodeCheck Manifest Constants

INIT FLOAT
INIT STRING
INIT OTHER

(@)

The declarator base types for decl _base,
dcl base root,and op base():

CodeCheck Quick Reference Page 42



CodeCheck Manifest Constants

#define CONSTRUCTOR TYPE 30

#define DESTRUCTOR TYPE 31

#define TEMPLATE TYPE 32 // C++ template parameter
#define COMP_TYPE EXTRA INT TYPE // Macintosh
#define EXTENDED TYPE LONG_DOUBLE TYPE

#define DERIVED TYPE DEFINED TYPE // Obsolete
#define SEGMENT TYPE EXTRA PTR TYPE // Microsoft

The values of del function flags:

#define INLINE FCN 1
#define VIRTUAL FCN 2
#define PURE_FCN 4
#define PASCAL FCN 8
#define CDECL_FCN 16
#define INTERRUPT FCN 32
#define LOADDS_ FCN 64
#define SAVEREGS FCN 128
#define FASTCALL FCN 256
#define EXPORT_ FCN 512
#define EXPLICIT FCN 1024

The values of del_level() and op_level()

#define SIMPLE 0
#define FUNCTION 1
#define REFERENCE 2
#define POINTER 3
#define ARRAY 4

The values of decl_level flags() and op_level flags():

#define CONST_ FLAG 1 // constant pointer
#define VOLATILE FLAG 2 // volatile pointer
#define NEAR FLAG 4

#define FAR_FLAG 8

#define HUGE FLAG 16

#define EXPORT_ FLAG 32 // Windows only
#define BASED FLAG 64 // Microsoft only
#define SEGMENT FLAG 128 // Borland, Microsoft

CodeCheck Quick Reference Page 43



CodeCheck Manifest Constants

The values of decl_storage flags:

#define EXTERN SC 1
#define STATIC SC 2
#define TYPEDEF SC 4
#define AUTO_SC 8
#define REGISTER SC 16
#define MUTABLE_ SC 32
#define GLOBAL_SC 64

The value of lin header and lin include kind

#define PRJ_HEADER 1 // Project
header (filename in quotes)
#define SYS HEADER 2 // System header

(filename in angle brackets)

Values for any of these variables:
stm_kind
stm_container
stm_is_ comp
stm_cp begin

#define IF
#define ELSE
#define WHILE

1 // if statement

2 // else statement

3 // while statement

#define DO 4 // do statement

#define FOR 5 // for statement

#define SWITCH 6 // switch statement

#define TRY 7 // try statement

#define CATCH 8 // catch statement

#define FCN _BODY 9 // function definition
1

#define COMPOUND 0 // compound statement
#define EXPRESSION 11 // expression statement
#define BREAK 12 // break statement
#define CONTINUE 13 // continue statement
#define RETURN 14 // return statement
#define GOTO 15 // goto statement

#define DECLARE 16 // declaration statement

CodeCheck Quick Reference Page 44



#define

EMPTY 17 // empty statement

The values of tag kind and lin within tag:

#define ENUM TAG 1
#define UNION TAG 2
#define STRUCT TAG 3
#define CLASS TAG 4
The value to be passed into function
pp_error_ severity() as argument:
#define INFO PP O // #error will be treated as
informative.
#define ERROR PP 1 // #error will fatal program
exit.
The value of lin preprocessor
#define DEFINE PP _LIN 1
#define UNDEF PP LIN 2
#define INCLUDE PP LIN 3
#define IF PP LIN 4
#define IFDEF PP LIN 5
#define IFNDEF PP _LIN 6
#define ELSE PP LIN 7
#define ELIF PP LIN 8
#define ENDIF PP LIN 9
#define PRAGMA PP _LIN 10
#define LINE PP LIN 11
#define ERROR PP LIN 12
#define ASM PP LIN 13
#define ENDASM PP _LIN 14
#define IMPORT PP LIN 15
#define CINCLUDE PP LIN 16
#define RINCLUDE PP LIN 17
#define RCINCLUDE PP LIN 18
#define INC_NEXT PP LIN 19
#define OPTION PP _LIN 20

CodeCheck Quick Reference Page 45



CodeCheck Manifest Constants

Predefined Constants

#define NULL 0
#define TRUE 1
#define FALSE 0

CodeCheck Quick Reference Page 46



System Dependent Constants

These constants are defined every time CodeCheck is executed.

Constant

CODECHECK
BETA

lint
__STDC
only.
__STDC

-k2.
___cplusplus
through -k9).
cplusplus
through -k9).
_ FILE
__LINE
__DATE

_ TIME

__builtin va alist

Value

801

<file name>
<line number>
<date>

<time>

arg0

Comment

Major Version
Minor Version
Option -k2

Except option
C++ only (-k4

C++ only (-k4

The following constants are defined if the CodeCheck program is
compiled for the operating system specified. If you wish to use

CodeCheck on source code for operating systems other than the default

then appropriate constants must be set explicitly.

Unix Operating System

unix

__unix
DOS Operating System

MSDOS

M I86

M I86LM

__I86

_ MSDOS

o

I

CodeCheck Quick Reference Page 47



System Dependent Constants (OS)

Constant YValue Comment
__ LARGE 1
__ BORLANDC 0x500
_ _TURBOC_ 0x500
_WIN32 1

0S/2 Operating System

__0s2 1
__IBMC 200
__FLAT 1
_ 32BIT 1
386 1
M I386 1
_WIN32 1
NT Operating System
M IX86 300
_MSC_VER 800
_MSDOS 1
_X86_ 1
1386 1
MSDOS 1
_WIN32 1
VMS Operating System
vax 1
vms 1
vaxc 1
vaxllc 1
VAX 1
VMS 1
VAXC 1
CCSgfloat 1
CCSparallel 1

CodeCheck Quick Reference Page 48



System Dependent Constants (C++)

These constants are defined when options K6 through K9
are enabled.

Constant Value Comment

Macintosh Operating System

applec 1
MC68000 1
mc68000 1
m68k 1
macintosh 1
Borland C++
_ CDECL_ 1
_ BCPLUSPLUS 0x0340
_ TCPLUSPLUS 0x0340
_ TEMPLATES 1
wchar t short 0S/2 only.
Microsoft C++
__single inheritance Expands to
nothing.
__multiple inheritance Expands to
nothing.
___virtual inheritance Expands to
nothing.
M I86 1 Except
Windows NT.
M I86LM 1 Except
Windows NT.
M IX86 300
_MSC VER 1100
~MSDOS 1
_X86_ 300
1386 1
MSDOS 1

CodeCheck Quick Reference Page 49



System Dependent Constants (C++)

These constants are defined when options K6 through K9
are enabled.

Constant Value Comment

Metaware High C
__HIGHC 1

Symantec C++
SC 700

IBM VisualAge C++
__IBMCPP_ 350

Metrowerks CodeWarrior C++
__ MWERKS 1 Macintosh

CodeCheck Quick Reference Page 50



Glossary

Glossary of terms used in this reference guide.

abstractdeclarator

- A type without a declarator name, e.g. (char *¥).
aggregate type

- Array, union, struct, or class.
anonymous tag

- An enum, union, struct, or class defined without a name.
argument of a function

- A value actually passed to a function during a call (see
parameter).
base type

- The simple type of an identifier before any qualification.
For example, the declaration “const double *xyz[5]” has base
type “double”.
block

- A compound statement or function body.
compound statement

- A block of statements enclosed in curly braces.
declarator

- Anidentifier that is being declared.
definition

- A declaration that allocates space for a variable or function,
as opposed to a declaration that merely refers to a variable or
function.
directive

- A preprocessor instruction (all directives begin with #).
global

- A variable with file scope, whether or not it is static.
Halstead operator

- Any token that is not an identifier.
high precedence operator

- Any of these operators:

& (address of)

CodeCheck Quick Reference Page 51



Iteration Statement

function call)
pointer dereference)
bitwise logical complement)

(
(
(
++ (pre- or post-increment)
— (pre- or post-decrement)
* (indirection)
! (logical negation)
. (member selection)
->* (C++ member dereference)
L* (C++ member selection)
- (unary arithmetic negative)
+ (unary arithmetic positive)
1 (C++ scope)
[] (subscript)
iteration-statement
- A for-, while-, or do-while-statement.
jump-statement

- A goto-, continue-, break-, or return-statement.
local

- A variable with block scope, declared within a function.
low precedence operator

- Any of these operators:

?: (conditional)
= 4= = *= = &= |= %= "=

assignments)
manifest constant

- A constant referred to with a symbol rather than a value.
medium precedence operator

- Any operator not listed above as low- or high-precedence.
newline

- Depending on the system, a newline “character” may be a
carriage return, a linefeed, a return followed by a linefeed, or a
linefeed followed by a return. Like most compilers,
CodeCheck accepts any of these.

CodeCheck Quick Reference Page 52



parameter

parameter of a function

- The name of a value received by a function in a call (see
argument).
oldstyle function

- An unprototyped function.
rule file

- An ascii (.cc) file that contains CodeCheck expert systems
rules, which are event driven. The language is a subset of C.
selection statement

- if-statement, if-else-statement, or switch-statement.
simple type

- atype that is NOT an array, pointer, reference, or function.
statistic type

- A special CodeCheck storage class. Statistical variables
remember every value ever assigned to them.
tagname

- The “tag” of an enum, union, struct, or class is the identifier
that immediately follows the keyword enum, union, struct, or
class.
trigger

- A CodeCheck variable which is event driven and may
conditionally activate a selection statement 'if in a CodeCheck
rule file.
whitespace

- One or more of these characters: space, tab, newline,
vertical tab, form-feed, backspace. Comments within macro
definitions are whitespace.

CodeCheck Quick Reference Page 53



