
CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

CodeCheck Technical Notes
Spring 2006 Version 12.50

CodeCheck Technical Notes are technical discussions for those who are installing CodeCheck, writing
CodeCheck rules, or writing scripts that invoke CodeCheck. These notes supplement and amplify upon material in
The CodeCheck Reference Manual and C and C++ Source Code Analysis Using CodeCheck, and provide
important information that is particular to machines, compilers, libraries, and operating systems.

Table of Contents:
#1 CodeCheck MS-DOS / WIN-3.x __5

#2 CodeCheck Unix __8
Special HPUX, AIX, SUN, SGI, and SOLARIS Caveats __ 9

#3 CodeCheck OS/2 ___11

#4 CodeCheck VMS ___12

#5 CodeCheck Mac __14

#6 CodeCheck Windows 2000 [NT] ___18

#7 Troubleshooting Syntax “Errors”__19
Why syntax errors occur ___ 19
The first and most important step__ 19
Nonstandard keywords __ 19
Creating new intrinsic type specifiers with new_type __ 20
SYSTEM ERRORS ___ 22
Contacting Abraxas Software for Support___ 22

#8 Errata in the CodeCheck Reference Manuals ______________________________________23

#9 New Variables, Functions, Operators and Error Messages____________________________24

#10 Checking Microsoft C/C++ Sources __26
Which version of Microsoft C/C++? __ 26
New MSDEV C++ TYPES - __int8, __int16, __int32, __int64, and bool __________________________ 26
Specify the target API with a command-line macro ___ 26
If you use Microsoft C (but not C++) then read this! __ 27
CodeCheck can be incorporated into the Visual C++ Environment ______________________________ 27
Known bugs in Microsoft C++ 6.0 headers [There are NO known problems in MSDEV 7.0 "Dot-Net"]27

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 1

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

Know Bugs When Running ATL.CPP Sample [MSDEV 6.0 C++]______________________________ 28
Known Bugs in RPC.H [MSDEV 6.0 C++] ___ 28
Microsoft Visual C++ .NET __ 29

#11 Checking Borland C/C++ Sources ___30

#12 Checking Symantec C/C++ Sources __33

#13 Checking Watcom C/C++ Sources ___34

#14 The Rogue Wave C++ Libraries ___35
Rogue Wave and Borland C++__ 35
Rogue Wave and Metaware Ansi C __ 36

#15 Type Checking with CodeCheck ___37

#16 CodeCheck under IBM MVS-OE __43

#17 IBM VisualAge C/C++ Compiler __45

#18 New Command Options & Functions ___47

#19 ObjectSpace/HP Standard Template Libraries______________________________________49

#20 NameSpace - ANSI C++ Working Draft___52

#21 Checking Metrowerks CodeWarrior C/C++ Sources _________________________________54

#22 Checking SUN C/C++ Code on SUN Sparc __55
Solaris machine dependent caveats __ 55

#23 Running CodeCheck within Microsoft Visual C++ Developer Studio ___________________56
How to integrate CodeCheck with Microsoft Developer Studio _________________________________ 56
Searching for Header Files within MSDEV STUDIO ___ 57
Checking Projects and individual files with MSDEV STUDIO _________________________________ 57
Having source files in different directories: ___ 57

#24 Improving CodeCheck Speed __58
Codecheck on a relatively large Microsoft C++ project__ 58

#25 Extending CodeCheck Functionality __60
Extending CodeCheck___ 60
Extending Function Meaning ___ 61

#26 GNU-GCC C/C++ Configuration___62
GNU-GCC Overview__ 62
GCC C On Windows 2003 ___ 63
GCC C++ On Windows 2003 ___ 64

#27 New CodeCheck Variables, Functions, Operators and Error Messages____________________65

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 2

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#29 Processing IBM 390-z/OS EBCDIC___68
IBM OS/390 & z/OS-C/C++ Overview __ 68
IBM OS/390 C EBCDIC Storage Example __ 68
IBM OS/390 C EBCDIC Summary___ 70

#30 New CodeCheck Triggers and Functions Version 12.50 ________________________________71
New CodeCheck 12.5 Functions:___ 71
New CodeCheck 12.5 Triggers:__ 72

Trouble Report Form__73

 These technical notes are up-to-date for CodeCheck version 12.50. All rule files and support tips are now
available via World Wide Web (http://www.abraxas-software.com/dl). All online versions of all
documentation is available to customers (http://www.abraxas-software.com/pdf).

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 3

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

Using Abraxas Software site [www.abraxas-software.com]

Currently we have placed on our www site (www.abxsoft.com) all relevant CodeCheck documentation.

Change.txt Log of all CodeCheck changes to date – Request by Email.

Master.txt The complete list of all CodeCheck options, functions, and variables. Text format for easy
searching.

Rule_idx.txt A list of all CodeCheck rule files available from Abraxas Software.

Rules.zip The standard Rule Files [.cc] currently available in ZIP format. Individual rule files
 may be downloaded from the site.

If you don't see what your looking for then please send Email to support@abxsoft.com and tell us what you what
you need. We will Email it to you within 24 hours.

www.abxsoft.com/dl [/public.zip]
We have created a public rule file (/public.zip) on the site, all submissions must be sent via Email to
support@abxsoft.com, please mention you would like to have your rule file posted in www.abxsoft.com/dl

• • • Important • • •
The latest editions of The CodeCheck Reference Manual and C and C++ Source Code
Analysis Using CodeCheck are dated January 30, 2006. To order the new editions from
Abraxas, please call 1-503-232-0540, or send Email to support@abraxas-software.com.
To fax please use USA 503-232-0543. When submitting problem reports use form-format
found on last page of this document, include materials requested.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 4

http://www.abxsoft.com/dl

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#1 CodeCheck MS-DOS / WIN-3.x
Written by: Patrick Conley
Last Revised: 1 October 1998

This Technical Note describes the features and requirements of CodeCheck for DOS computers.

Which version is appropriate?
CodeCheck for the DOS operating system comes in several versions. The version of CodeCheck written for standard DOS,
named check.exe, is limited by the severe memory restrictions imposed by DOS. In fact, since CodeCheck 5.0 we are no
longer able to support 640K, i.e., the 16 bit world. Currently for CodeCheck to used on DOS/WIN 3.x we include a 32 Bit
DOS Extended version called chk32.exe, which is based on technology from Borland International.

There are several ways to overcome these memory restrictions. If you wish to run CodeCheck within a DOS emulator under
a different operating system, e.g. IBM OS/2 2.x, MS Windows NT, DEC VMS, Apple Macintosh, or any dialect of Unix,
then Abraxas Software strongly recommends instead that you use the version of CodeCheck that was compiled specifically
for your operating system. If, however, you have DOS running on a 386, 486, or Pentium computer with at least 8 megabytes
of extended memory, then you can use CHK32.exe. This version of CodeCheck takes full advantage of all available
extended memory, the 80386 processor’s 32-bit instruction set, and 32-bit addressing. It is functionally equivalent to
check.exe, but is not subject to the 640k memory limit imposed by DOS.

What it requires
To use CHK32 you must have a 386 (or later) computer, running MS-DOS 5.0 or later, or DR-DOS 6.0 or later. CHK32
functions well in systems with at least 16 megabytes of available extended memory. However if you are analyzing MS-
VC++ 4.0 or higher then 64 MB should be considered the minimum. If your checking MSDEV 5.0 or higher then 128MB
RAM and use a 400MHZ Pentium II.

Compatibility
CHK32 can execute while any of these memory managers are active:

• Helix NETROOM version 2.2 or higher
• Microsoft Windows 3.0 and 3.1 in enhanced mode
• Qualitas 386MAX version 6.0 or higher
• Quarterdeck QEMM386 version 6.00 or higher

CHK32 can execute while any of these disk-cache utilities are active:

• Hyperware HyperDisk
• Microsoft SMARTDrive
• Multisoft Super PC-KWIK
• Qualitas QCache

CHK32 is happiest in the DOS / WIN3.x environment when it has 16 megabytes or more of extended memory to use.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 5

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

Microsoft Windows
CHK32 runs under Windows 3.x, Windows NT/95, and OS/2. It should be run from the MS-DOS prompt, not from the File
Manager. If your operating system is Windows NT then please contact Abraxas for the 32-bit NT version of CodeCheck if
you wish to support long file names.

If you wish to run CHK32 under Microsoft Windows, and if your computer does not have a math coprocessor, then you
will need to install a floating-point emulator. Your computer has no math coprocessor if it is a 386 without a 387 chip
installed, or if it is a 486SX chip. Note: the 486DX, and Pentium chips do have on-board math coprocessors.

Some DOS and Windows environments may require the file 32rtm.exe when running chk32.exe, please place 32rtm.exe and
dmpi32vm.ovl in your system PATH. (\bin) These files can be found in the container file 32bit.zip included on the
CodeCheck DOS/WIN distribution disk. These files may be obtained from our ftp site at ftp.abxsoft.com.

Windows 3.x may require WINDPMI.386, if this file is not already installed then place it in c:\windows and add the
following line to the file system.ini in c:\windows.

[386Enh]

device=c:\windows\windpmi.386

IBM OS/2 3.x
CHK32 will run in a DOS box under OS/2 version 2.0 or later if this operating system was installed with the DOS protected
mode option, and if you have a math coprocessor. Be sure to change the settings for the DOS Full Screen Command Prompt
so that at least 8 megabytes of extended memory are available.

MS-DOS and DR-DOS
If you use the DOS=HIGH option in CONFIG.SYS then you must use a third-party memory manager (e.g. Windows, QEMM-
386, 386MAX, EMM386, or NETROOM) to use CHK32.

CHK32 can manage memory on its own, without the assistance of any third-party memory manager, but only if the
DOS=HIGH option is not used in CONFIG.SYS.

CHK32 is not compatible with the Task Swapper in DOSSHELL of MS-DOS.

Quarterdeck QEMM-386
Do not use the NOXMS option. If you use the DOS=HIGH option in CONFIG.SYS, then do not use the QEMM-386 OFF
option.

Qualitas 386MAX
If you use either the EMS=n option or the EXT=n option, set n to a value greater than 0 to enable services required by
CHK32.

InterSolv PolyMake
If you wish to invoke CodeCheck under InterSolv PolyMake, be sure not to use the asterisk operation line modifier in front
of the CodeCheck call:

 * CHK32 -Rmyrules (etc.) This asterisk (*) will cause a crash!

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 6

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

Predefined macros
CodeCheck always predefines certain macros before it reads a single line of source code. Which macros are predefined, and
which values they have, depend on which operating system is in use and which –K option is in effect. To determine exactly
which macros are predefined, and their values, use the –D? command-line option. For example, the command chk32 -K4
-D? will cause CodeCheck to print the list of macros that are predefined when generic C++ source files are checked.

In addition to the standard ANSI predefined macro constants, the following macros are predefined when no –K option is
specified. (-D?)

MSDOS __MSDOS__ __I86__
M_I86 __LARGE__ __386__
M_I386 M_I86LM _WIN32

If your compiler is from Borland, Microsoft, Symantec, or Watcom, then please see the corresponding Tech Note for
compiler-specific instructions and macro definitions.

 If necessary, any predefined macro may be undefined with the –U command-line option, or given a different value with the
–D option. The special option –D? will cause CodeCheck to print a list of all predefined macros.

Insufficient Extended Memory?
CHK32 will issue an “insufficient extended memory” message if it cannot obtain more dynamic memory from the operating
system. The minimum amount of memory for using CodeCheck should be considered 16 Megabytes of RAM, 8 MB of RAM
will only provide the ability to analyze very small C/C++ files and not entire projects.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 7

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#2 CodeCheck Unix
Written by: Patrick Conley
Last Revised: 22 June 2002

This Technical Note discusses the installation and execution of CodeCheck on Unix computers.

Shrouded sources
CodeCheck Unix is supplied as “shrouded” C source files. Shrouding is a process that renders the source code intelligible
only to C compilers. Shrouding removes all formatting and comments, encodes all identifier names, and converts high-level
grammatical constructs (e.g. while and for) into low-level code (if and goto statements). We distribute CodeCheck in
shrouded sources in order to maximize portability while still maintaining security for our intellectual property.

CodeCheck requires an ANSI-C compiler
The source files for CodeCheck require an ANSI compiler. If your normal compiler is not ANSI-conforming, then there are
several alternatives. First, your Unix installation may have Gnu C. This is an excellent shareware C compiler for Unix
computers that has been very widely distributed around the world by the Free Software Foundation. Many Abraxas
customers have compiled CodeCheck with the Gnu C compiler without trouble. Second, almost any C++ compiler will do as
well, since C++ is based on ANSI C, but its preprocessor must also be ANSI-conforming.

The CodeCheck source code for UNIX is "shrouded" to maintain our proprietary technology and patented advantages. The
shrouding may create some debugging problems. The shrouded source code is different than the original source code,
especially with the names of user defined types. This may cause problems during linking with C++ compilers which are very
sensitive. If you have difficulties compiling or linking the shrouded source code please contact send us an example of the
error messages you are getting from your compiler and/or linker.

Special instructions for QNX
If your flavor of Unix is QNX, then you must define the macro CC_QNX when compiling CodeCheck. Do this by adding this
option to CFLAGS in the makefile for compiling CodeCheck:

 –dCC_QNX

If your “long” Integer Type is wider than 32 bits
The CodeCheck sources assume that the “long” integer type is 32 bits wide. If your long integer is wider than 32 bits (for
example, on the new Alpha chip from DEC), then add this command-line option to the makefile for compiling CodeCheck:

 –dLONG64

If you have other special requirements please contact Abraxas Software.

How CodeCheck searches for header files
CodeCheck looks for header files in the same way as virtually all Unix compilers. The default directory is /usr/include.
If any command-line options –I have been used, then directories given in these options are searched before the default
directory. If desired, the –I command-line options can be placed in project files, one per line.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 8

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

CodeCheck also looks at the INCLUDE environmental variable for header directories. You may set this variable to identify
the header directory paths. For example, if some of your C headers are located in /usr/zinc/include, then the
following C-Shell command will set the INCLUDE variable to the correct path:

 setenv INCLUDE "/usr/zinc/include"

If your headers are located in more than one directory, list all directory paths in this variable, separated by colons.

CodeCheck searches directories for system header files in this order:

1. Directories specified by calling the CodeCheck function set_str_option('I', …).

2. Directories specified with -I in the command-line or in project files.

3. Directories specified in the INCLUDE environmental variable.

4. The default header directory, /usr/include.

5. The current directory (the directory where the file issuing the #include directive is located).

How CodeCheck finds rule files
CodeCheck searches for rule files in the default directory /usr/CodeCheck/rules, and then in the current directory.
Note the two upper-case C’s in the name of this default directory.

CodeCheck also looks at the CCRULES environmental variable for rule directories. You may set this variable to identify the
rule directory paths. For example, if some of your CodeCheck rule files are located in /usr/foobar, then the following C-
Shell command will set the CCRULES variable to the correct path:

 setenv CCRULES "/usr/foobar"

Directories listed in CCRULES are searched before the default rule directory. If your rule files are located in more than one
directory, list all directory paths in this variable, separated by colons.

Predefined macros
CodeCheck always predefines certain macros before it reads a single line of source code. Which macros are predefined, and
with which values, depend on which operating system is in use and which –k option is in effect. To determine exactly which
macros are predefined, and their values, use the –d? command-line option. For example, check -k4 -d? will cause
CodeCheck to print the list of macros that are predefined when generic C++ source files are checked.

The following macros are predefined when no –k option is specified. (-D?)

unix __unix __builtin_va_alist

 If necessary, any predefined macro may be undefined with the –U command-line option, or given a different value with the
–D option. The special option –D? will cause CodeCheck to print a list of all predefined macros.

Special HPUX, AIX, SUN, SGI, and SOLARIS Caveats

Extremely Important: most compilers have some predefined macros. Be sure to define yours on the command-line when
invoking CodeCheck. Failure to do so will result in highly mysterious syntax errors whenever a header or source file
contains one of these macro names. Here are some examples that we have learned about:

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 9

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

HPUX: You must define the macro __hpux on the command-line. On HP 9000 computers, you must define a macro
on the command-line that indicates which CPU you have: __hp9000s300, __hp9000s700, or
__hp9000s800.

AIX: You must define the macro _AIX on the command-line.

SUN: Either sun3 or sun4 must be defined on the command-line.

SGI: _MIPS_SZLONG must be defined 32 or 64 depending on architecture.

SOLARIS: Please define one of macros __i386, i386, __ppc, __sparc, or sparc for the machine type. Otherwise you may
get error message "ISA not supported" from included header file "isa_defs.h" which requires one of macros
above to be defined.

It is suggested to have the macro __STDC__ defined on the command line if you are checking C++ code with system
header files included. If this macro is not defined, it is possible /**/ will be the paste operator used in some system header
files, and /**/ is effective as macro paste operator only when option -K0 or -K2 is used.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 10

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#3 CodeCheck OS/2
Written by: Patrick Conley
Last Revised: 15 December 1999

This Technical Note discusses the behavior of CodeCheck OS/2.

The CodeCheck OS/2 executable
The CodeCheck OS/2 executable is named CHECK2.EXE. It must be run in the OS/2 command-line environment, not in the
DOS box. It must be run under OS/2 version 2.0 or later. It is not compatible with earlier 16-bit versions of OS/2.

Presentation Manager is not supported
CodeCheck OS/2 is designed for use with the OS/2 command-line interpreter, either full-screen or within a window. It does
not provide a graphical user interface. Some compiler vendors allow CodeCheck to be built-in via an options pull-down,
please see your compiler user manual if you require a GUI interface for CodeCheck/2.

Predefined macros (Note: these macros changed 1-1-95)
CodeCheck always predefines certain macros before it reads a single line of source code. Which macros are predefined, and
which values they have, depend on which operating system is in use and which –K option is in effect. To determine exactly
which macros are predefined, and their values, use the –D? command-line option. For example, the command check -K4
-D? will cause CodeCheck to print the list of macros that are predefined when generic C++ source files are checked.

In addition to the standard ANSI predefined macro constants, the following macros are predefined when no –K option is
specified (these are the correct macros for the C-SET compiler):

 __IBMC__ __32BIT__ _M_I386 __386__ __OS2__ __FLAT__

If you use the –K4 switch for C++, then these macros are also predefined:

 __IBMCPP__ __cplusplus c_plusplus

If necessary, any predefined macro may be undefined with the –U command-line option, or given a different value with the –
D option.

See the Tech-Note section on IBM Visual Age C++ Compiler for latest information.

If you use the Borland compiler on OS/2
Very important: CodeCheck OS/2 assumes that your compiler is IBM C-SET. If you use the Borland C/C++ compiler, then
you must define __BORLANDC__ and __TURBOC__ on the command-line when invoking CodeCheck. For example, to
check a C++ file named foo.cpp, use:

 check foo.cpp -k4 -d__BORLANDC__=0x0500 -d__TURBOC__=0x0500

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 11

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#4 CodeCheck VMS
Written by: Loren Cobb
Last Revised: 09 April, 1996

This Technical Note discusses the installation and behavior of CodeCheck on computers with the VMS operating system
from Digital Equipment Corporation.

Shrouded sources
CodeCheck VMS is supplied as “shrouded” C source files. Shrouding is a process that renders the source code intelligible
only to C compilers. Shrouding removes all formatting and comments, encodes all identifier names, and converts high-level
grammatical constructs (e.g. while and for) into low-level code (if and goto statements). We distribute CodeCheck in
shrouded sources in order to maximize portability while still maintaining security for our intellectual property.

Define the CCRULES logical name
Before CodeCheck can successfully read your C source files, it needs to know the directory in which you have placed the
CodeCheck rule files supplied by Abraxas. CodeCheck uses the CCRULES logical name for this purpose. Define this logical
name to the appropriate directory path. For example, if your rule files are located in DISK1:[ABRAXAS.RULES], then this
VMS command will define the CCRULES logical name:

 $ DEFINE CCRULES DISK1:[ABRAXAS.RULES]

If your rule files are located in more than one directory, list all directory paths in this variable, separated by commas.

If this logical name is not defined, CodeCheck will only look in the current directory for rule files. There is no default path
for rule files.

How CodeCheck finds header files
If the filename in an #include directive is in double quotes, then the list of directories to be searched for header files
begins with the current directory, followed by each path specified in –Ipathname command-line options, followed by each
path specified in the logical name C$INCLUDE.

If the filename in the #include directive is in angle brackets, then the list of directories to be searched for header files
begins with each path specified in –Ipathname command-line options, followed by each path specified in the logical
name VAXC$INCLUDE (or SYS$LIBRARY if VAXC$INCLUDE is empty or not defined).

If the filename in the #include directive appears to be a full pathname, then the search list is ignored entirely.

If CodeCheck fails to find a header file then it will report a chronological list of all directories in which it looked.

Predefined macros
CodeCheck always predefines certain macros before it reads a single line of source code. Which macros are predefined, and
which values they have, depend on which operating system is in use and which –k option is in effect. To determine exactly
which macros are predefined, and their values, use the –d? command-line option. For example, the command check -k4
-d? will cause CodeCheck to print the list of macros that are predefined when generic C++ source files are checked.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 12

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

In addition to the standard ANSI predefined macro constants, the following macros are predefined when no –K option is
specified.

Vax vaxc vms vax11c CC$gfloat
VAX VAXC VMS VAX11C CC$parallel

If necessary, any predefined macro may be undefined with the –u command-line option, or given a different value with the –
d option.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 13

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#5 CodeCheck Mac
Written by: Patrick Conley
Last Revised: 1 January 1997

This Technical Note discusses the behavior of CodeCheck on Macintosh computers.

CodeCheck Mac runs under MPW
CodeCheck for the Macintosh is distributed as an MPW tool, not a stand-alone application. Thus MPW (the Macintosh
Programmer’s Workshop) is required. Despite this restriction, CodeCheck Mac can be used by Symantec Think C users; for
details see the last section in this note.

CodeCheck was originally written and developed on the Macintosh within the MPW environment. We are serious Mac
developers.

How CodeCheck finds header files
If the filename in an #include directive is in double quotes, then the list of directories to be searched for header files
begins with the current directory (the directory where the file issuing #include directives is located), followed by each path
specified in –Ipathname command-line options, followed by each path specified in the MPW environmental variables
CIncludes and CPIncludes.

If the filename in the #include directive is in angle brackets, then the list of directories to be searched for header files
begins with each path specified in –Ipathname command-line options, followed by each path specified in the MPW
environmental variables CIncludes and CPIncludes.

If the filename in the #include directive appears to be a full pathname, then the search list is ignored entirely.

If CodeCheck fails to find a header file then it will report a chronological list of all directories in which it looked.

Set the CCRules environmental variable
Before CodeCheck can successfully read your C source files, it needs to know the directory in which you have placed the
CodeCheck rule files supplied by Abraxas. CodeCheck uses the CCRules environmental variable for this purpose. Set this
variable to the appropriate directory path. For example, if your rule files are located in the directory
{MPW}CodeCheck:Rules, then these two MPW commands will set the CCRules variable:

 set CCRules "{MPW}CodeCheck:Rules"
 export CCRules

If your rule files are located in more than one directory, list all directory paths in this variable, separated by commas. If this
environmental variable is not set, CodeCheck will look only in the current directory for rule files.

CodeCheck recognizes the keywords comp and extended
Both Apple’s MPW C and Symantec’s Think C have two keywords that are not part of the ANSI standard. These keywords
are comp, an extended integer type, and extended, a long double type. CodeCheck recognizes these new keywords. When
a variable of base type comp is found by CodeCheck, the variable dcl_base is set to COMP_TYPE (this manifest constant

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 14

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

is defined in the CodeCheck header file check.cch). Similarly, when a variable of base type extended is found,
dcl_base is set to EXTENDED_TYPE.

Note: COMP_TYPE and EXTENDED_TYPE are synonyms for the non-standard CodeCheck base types EXTRA_INT_TYPE
and LONG_DOUBLE_TYPE, respectively.

How to use wildcards
CodeCheck accepts the MPW standard wildcard symbol ≈ in the name of the source file to be checked. For example:

 check -Rerror •.c

will cause CodeCheck to apply the rules in error.cc to every file in the current directory that has the .c extension. These
files will be treated by CodeCheck as though they constitute a project (i.e. as though they are all to be linked together after
compilation). To inform CodeCheck that they are independent and not to be linked, include the –Z option, as in the
following example:

 check -Rerror -Z •.c

Unable to swap in the Shell segment?
Some users with very large projects may get the MPW message “Unable to swap in Shell segment” while running
CodeCheck. If this happens, quit MPW and increase the partition size granted to MPW by the Finder. To find the partition
size, select the MPW Shell icon and pick the “Get Info” item from the File menu. The partition size is given in a box in the
lower right-hand corner of the Info window.

Predefined macros
CodeCheck always predefines certain macros before it reads a single line of source code. Which macros are predefined, and
which values they have, depend on which operating system is in use and which –k option is in effect. To determine exactly
which macros are predefined, and their values, use the "–d?" command-line option. For example, the command check -k4
"-d?" will cause CodeCheck to print the list of macros that are predefined when MPW C++ source files are checked (note:
the quote marks are necessary).

In addition to the standard ANSI predefined macro constants, the following macros are predefined when no –k option is
specified:

 mc68000 MC68000 m68k macintosh applec

If necessary, any predefined macro may be undefined with the –U command-line option, or given a different value with the –
D option.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 15

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

Symantec C++ 7.0x is supported by CodeCheck Mac
Programmers who prefer the environment offered by Symantec C++ will need to gain some familiarity with Apple
Computer’s MPW (Macintosh Programmer’s Workshop) if they want to use CodeCheck. MPW is a Unix-like command-line
environment for C programmers, and CodeCheck is an MPW tool designed for a command-line environment.

CodeCheck needs to know which folders contain header files before it can read your source files. Unlike Symantec C++,
neither MPW C nor CodeCheck will search subdirectories while looking for headers. Each subdirectory containing header
files must be explicitly named! This is a real nuisance if you are using the Think Class Library, so we suggest the following
strategy: make a new folder called SCIncludes within the Interfaces folder of the MPW folder (not within the Symantec C++
folder). Copy every Symantec C and C++ header into this new folder. This results in a single folder containing every
Symantec header. Now you can set the CIncludes environmental variable to point to this one single folder, as shown
below:

 set CIncludes "{MPW}Interfaces:SCIncludes"
 export CIncludes

The second step is to create a copy of the Symantec header file “Mac #includes.cpp” for use with CodeCheck. First
duplicate this file, then move it to the SCIncludes folder. Do the same for the file “TCL #includes.cpp” if you are using
the Think Class Library. Lastly, place the following conditional code at the start of every source file:

 #ifdef CODECHECK
 #include <Mac #includes.cpp>
 #include <TCL #includes.cpp> // only for TCL users
 #endif

When using Symantec Think C, with or without its object extensions, be sure define the macro THINK_C on the command-
line, to ensure compatibility with Think source code:

 check -k4 -g -dTHINK_C=6 -rError mycode.c

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 16

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

Metro-Werks Code Warrior is supported by CodeCheck Mac

CodeCheck is an MPW tool, however CodeWarrior does support tools within its environment. CodeCheck will parse
CodeWarrior C++ source code. Code Warrior tools may be ran from MPW thereby creating complete compatibility with
CodeCheck. CodeCheck supports both the Macintosh and Microsoft Windows version of Metro-Werks CodeWarrior.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 17

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#6 CodeCheck Windows 2000 [NT]
Written by: Patrick Conley
Last Revised: 15 January 2002

This Technical Note provides basic information for using CodeCheck with Microsoft NT.

The executable file on distribute disk is named chknt.exe. This is a native WIN32 version, it is fully compatible with
Windows 95 and Windows NT Workstation and Server. This version supports long file names.

To run CHKNT, you must have a 300 MHZ Pentium II (or later) computer with operating systems Windows 95 or Windows
NT. CHKNT needs to run under MSDOS box invoked in Windows 95 or Windows NT. It is recommended at least 128
MegaBytes of available extended memory. And if you are running CHKNT on Windows NT, it is better to format the hard
disk for memory caching to NTFS file system to improve the performance.

Different from file systems of MSDOS and Windows 3.x, Windows NT and Windows 95 allow the name of a file or
directory to be formed by multiple words which are separated by blank spaces. When specifying any file or directory in
command line, please put the entire path in a pair of double quotes as whole, e.g. -I"Dir 1\Dir2\Dir 3". Do not specify it as -
I"Dir 1"\Dir2\"Dir 3".

The DOS version of CodeCheck [chk32.exe] will operate on Windows NT/95 using as a DMPI process. However this
version will not support long file names or directory names with embedded space.

CodeCheck / NT-2000 Performance
CodeCheck / NT is happiest with 256 Megabytes of RAM. If you intend to analyze very large Windows projects we highly
suggest 512 Megabytes DDR to avoid page faulting. A 2 Ghz Pentium-4 should be considered minimum for interactive
CodeCheck analysis on Microsoft MSDEV 7.0 or higher C++. The default paging disk must be formatted as NTFS.

Most users of CodeCheck / 2000[NT] are analysing Microsoft Visual C++ 7.0 or later source code. The Windows.h header
file used by Microsoft Developer [MSDEV] C++ is highly recursive. Microsoft uses pre-compiled header files to solve their
performance problems. CodeCheck must read each header file at least once for every module to correctly build internal
symbol tables. In summary analyzing MSDEV C++ with CodeCheck requires a minimum of 256 MB DDR for large
Windows C++ projects.

CodeCheck / NT can be installed as an MSDEV tool and be directly invoked from within the MSDEV enviroment and is
fully compatible with the Visual Editor supplied by Microsoft. See Chapter #23 in this document

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 18

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#7 Troubleshooting Syntax “Errors”
Written by: Patrick Conley
Last Revised: 15 December 1997

This Technical Note provides strategies for overcoming syntax “errors” found by CodeCheck.

Why syntax errors occur

It sometimes happens that code which compiles without error on your C or C++ compiler will generate a syntax warning or
fatal error when scanned by CodeCheck. Experience has shown that the possible causes for these errors are, in decreasing
likelihood, as follows:

• A macro whose definition is required by your system or library header files was not defined in the command-line. (
for example)

check -D_WIN32 test.c // Microsoft VC++ 5.0 may require explicit OS.

• You specified the wrong –K option, so CodeCheck failed to recognize a special keyword or macro. (The default is
ANSI-C otherwise explicit setting is required)

check -K4 test.cpp // When checking AT&T C++ -K4 must be explicit.

• Your compiler has one or more nonstandard keywords that are not known to CodeCheck.

check -d__handle=”” test.c // CodeCheck treats keyword as NULL.

• There is a bug in CodeCheck that we need to know about.

The first and most important step

First run CodeCheck again on the same source file, but use the command-line options –H, –M, and –D?, and do not use –J.
This will create a listing file named check.lst with all headers listed, all macros expanded, and all syntax error messages
shown in context. Open this listing file and examine the first syntax error. This is necessary because later syntax errors could
be propagated results of this first syntax error, by removing (or commenting out) the first syntax error, the following
warnings or fatal error messages could be solved. In addition, the –D? option will cause CodeCheck to print a list of all
macros that were predefined by CodeCheck for this run.

It very commonly happens that your system and library header files have conditional code that either ought to have been
suppressed by the preprocessor, or ought not to have been suppressed. You can tell when the CodeCheck preprocessor has
suppressed code by looking at the line numbers in the left-hand side of the page. When code is suppressed, the line number is
absent. Examine all the code that precedes the first warning message to see if it was suppressed when it ought not to have
been, or vice versa. This process can be very educational: you may find conditional code in headers for features that you
never knew existed. If you discover that a macro should have been defined (or undefined), then run CodeCheck again with
the appropriate –D and –U options.

Nonstandard keywords

If the error seems to be associated with a common nonstandard keyword (e.g. near, far, huge, cdecl, pascal,
interrupt) that should have been recognized by CodeCheck, then it is likely that you specified –K0 or –K1 instead of –
K2 or –K3. Remember that strict ANSI C does not include these keywords.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 19

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

If the error seems to be associated with an unusual keyword (e.g. packed) or an unusual grammatical construction, then it is
likely that your compiler has some special features that Abraxas would like to know about. Let us know all the details,
preferably by fax. Meanwhile, if it looks as though the code would be grammatical if CodeCheck were to ignore the special
keyword, then a workaround may be possible. For example, users of the Microtec C compiler should always insert this rule
into their rule files:

 if (mod_begin)
 {
 ignore("packed");
 ignore("unpacked");
 ignore("interrupt");
 }

This rule will cause the CodeCheck lexical analyzer to skip over every occurrence of packed, unpacked, and
interrupt. Try checking your code again with a rule like this. If it now parses without error then you have found a solu-
tion. As another example, this rule will prevent syntax errors for users writing for the old Zortech C compiler:

 if (mod_begin)
 {
 ignore("__handle");
 undefine("_MSC_VER");
 define("__ZTC__", "0x0310");
 define("asm", "_intrinsic_");
 }

It may also be possible to use a macro defined with the –D option to eliminate this kind of error. For example, the command

check -K0 –Dvoid=int foo.c

will invoke CodeCheck with the K&R keyword set, and the non-K&R keyword void defined as a macro with the value
int.

If types such as size_t are at the place of a syntax error, check if the type is a built-in type for your compiler. If so, you can
overcome the error by using a macro defined with the -D option on the command line like -Dsize_t=int.

Other types in this category are size_t, time_t, clock_t, fpos_t, div_t, idiv_t. Some possible reasons for are the following:

a.) The header files defining these types are not defined before they are referred in your code. These types are defined in
stdlib.h, time.h, and wchar.h, etc., for most C++ compilers. Please check your project source code to see if these header
files are being processed. You can do this by specifying -P, -L and -H on the CodeCheck command line and inspect the file
CHECK.LST to see if these header files were processed and the types were defined.

b.) The code defining these type are included with the header files. However the definitions are suppressed by conditional
compilation directives. You can see if this is the case by checking if the lines with the definitions are not macro expanded (-
M), if this is the case then use -D or -U to expand the definition of the type. The best solution to this problem is go back to
your standard compiler and do a pre-processor expansion (typically -E option) and follow the conditional path taken, where
you notice a divergence with CodeCheck's (CHECK.LST) expansion will be the source of the problem.

c.) Header files are pre-compiled and the original compiler header files are not in the directories. In this case, the only
solution is find the original compiler header files and place them on your system or access them from another system via
your local area network. CodeCheck doesn't support pre-compiled header files and must have access to the original source
version of the appropriate .H or .HPP files.

Creating new intrinsic type specifiers with new_type

Some compilers have nonstandard intrinsic types that are not defined in any header file. The function new_type() informs
CodeCheck of the existence of such a built-in nonstandard type. The first argument for new_type() should be the new
keyword itself, in quotes. The second argument should be any of the possible values of dcl_base except

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 20

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

DEFINED_TYPE. (These values are defined as constants in the standard CodeCheck header check.cch). If the value is one
of these:

EXTRA_INT_TYPE EXTRA_UINT_TYPE EXTRA_FLOAT_TYPE EXTRA_PTR_TYPE

then CodeCheck will treat the new keyword as a new base type that is not equivalent to any of the standard types. If it is any
other value then the keyword will be considered a synonym for the specified type. Here is the complete list of 25 base types
as defined in check.cch:

#define VOID_TYPE 1
#define BOOL_TYPE 2
#define CHAR_TYPE 3
#define SHORT_TYPE 4
#define WCHAR_TYPE 5
#define INT_TYPE 6
#define LONG_TYPE 7
#define LONG_LONG_TYPE 8 // mainframe long long type
#define EXTRA_INT_TYPE 9 // nonstandard integer
#define UCHAR_TYPE 10 // unsigned char
#define USHORT_TYPE 11 // unsigned short
#define UINT_TYPE 12 // unsigned int
#define ULONG_TYPE 13 // unsigned long
#define EXTRA_UINT_TYPE 14 // nonstandard unsigned integer
#define FLOAT_TYPE 15
#define SHORT_DOUBLE_TYPE 16 // Symantec and others
#define DOUBLE_TYPE 17
#define LONG_DOUBLE_TYPE 18
#define INT8_TYPE 19 // __int8, __int16, __int32, and __int64
#define INT16_TYPE 20 // are types of Microsoft C++, Borland C++
#define INT32_TYPE 21 // and IBM VisualAge C++.
#define INT64_TYPE 22
#define EXTRA_FLOAT_TYPE 23 // non-standard float
#define ENUM_TYPE 24
#define UNION_TYPE 25
#define STRUCT_TYPE 26
#define CLASS_TYPE 27 // C++ only
#define DEFINED_TYPE 28 // any typedef name
#define EXTRA_PTR_TYPE 29 // nonstandard pointer
#define CONSTRUCTOR_TYPE 30 // C++ only
#define DESTRUCTOR_TYPE 31 // C++ only

Up to 64 new intrinsic types can be defined with calls to new_type(). Please note: use this mechanism only for type
keywords that are built into your compiler, never for types that are defined in header files.

An Example of the use of new_type()

Let us suppose that your compiler has a nonstandard type specifier int64, which stands for a 64-bit integer type that is not
defined in any header. This rule could be inserted into every CodeCheck rule file to handle this new keyword:

 if (prj_begin)
 new_type("int64", EXTRA_INT_TYPE);

This rule introduces int64 as a new integer type, not equivalent to any other integer type. Whenever CodeCheck finds a
declaration with base type int64, it will set the variable dcl_base to EXTRA_INT_TYPE.

On Macintosh systems, CodeCheck understands the base types extended and comp to correspond to
LONG_DOUBLE_TYPE and EXTRA_INT_TYPE, respectively. These Macintosh keywords do not have to be defined by the
CodeCheck user. As a further convenience to Macintosh users, the special manifest constants EXTENDED_TYPE and
COMP_TYPE may be used for these base types.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 21

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

The EXTRA_PTR_TYPE is reserved for special atomic pointer types (pointer types that may not be dereferenced, e.g.
Microsoft’s _segment type). Microsoft C users do not need to inform CodeCheck about the _segment type: it is already
understood by CodeCheck. Borland C users please note: contrary to statements in Borland’s documentation, the Microsoft
_segment keyword is not syntactically the same as the Borland _seg keyword. The former is an atomic base type, while
the latter is an ordinary type modifier for pointers.

SYSTEM ERRORS

In case you run into system errors such as ‘bus error’, segmentation violations:

1.) If any rule file is used, remove the corresponding .cco file, and try running CodeCheck again.

2.) If the problem still exists, run CodeCheck without the Rule File. If problem is solved examine the Rule File for possible
problems and send a copy to Abraxas via EMAIL (support@abxsoft.com).

3.) If the problem still exists, reduce the problem to a simple C or C++ example and send it to Abraxas via Email.

System Errors are extremely rare and Abraxas Software needs to known immediately if you discover one. Thank you.

Contacting Abraxas Software for Support

If you need to communicate with us the fastest way is via Email or Fax. Our Email is support@abxsoft.com, and the Fax
number is USA:503.232.0543. In your Email or fax, please describe you problem. When contacting us always provide your
valid Inter-Net reply address and your physical address so we can mail you a free update. If it is a syntax warning or a fatal
error, please try the suggestions found in Tech Note #6 before sending your problem to us. It frequently helps to show us the
relevant portion of a listing file, so that we can see the error message in its context. Make this listing file by running
CodeCheck with the -H, -M, and -D? options. Do not use -J. The list file created by CodeCheck will have the name check.lst.
Lastly, please give the information such as CodeCheck version (type check at the command line for your version), your
Abraxas customer service number (Part Number or Serial Number), operating system, platform, C/C++ compiler, and your
phone, fax, Email information. Finally always provide your current name and address so we can send you the current
software free of charge.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 22

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#8 Errata in the CodeCheck Reference
Manuals
Written by: Patrick Conley
Last Revised: 15 December, 1997

This Technical Note corrects all known errors and clarifies all known ambiguities in The CodeCheck Reference Manual,
dated January 1997.

The errata reported here are relevant to these options, functions, and variables:

See the Document ‘master.txt’ at ftp://ftp.abxsoft.com/codchk_doc/master.txt for the latest complete reference on
CodeCheck functions, triggers, and variables.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 23

ftp://ftp.abxsoft.com/codchk_doc/master.txt

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#9 New Variables, Functions, Operators and
Error Messages
Written by: Patrick Conley
Last Revised: 10 March 98, for version 7.51

This Technical Note describes all new CodeCheck variables, functions, operators, and messages that have been added since
The CodeCheck Reference Manual went to press in October of 1995.

New Variables
idn_constant // Set to 1 when an identifier is an enum constant.

New Functions
FILE * fopen(char*, int);

int fclose(FILE *);

int fread(FP, char *, int);

int fwrite(FP, char *, int);

void remove_path(void); // Remove earliest include path specified by set_str_option('I',"...").

New Operators
 (none)

New Warning Messages

C0050 There is no class to inherit from.

The inherited keyword has been used when there is no class to inherit from (Symantec THINK C for Macintosh
only).

C0051 Template <name> has not yet been declared.

A C++ template name has been used without a forward declaration. A few C++ compilers consider this to be legal, but
it is very poor programming style.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 24

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

New Fatal Error Messages

E0057 Allowed in C++ but not in C.

The indicated syntax is legal C++, but not C. Make sure that the correct –K command-line option has been used for this
source code.

E0058 NULL string argument in CodeCheck strcmp function.

One of the arguments to strcmp was NULL.

E0059 Paste operator (##) is the first token.

The ANSI preprocessor paste operator (##) cannot be the first token in a macro expansion. This is a syntax error in a
preprocessor macro definition or macro expansion.

E0060 CodeCheck will not write to any file with extension <extension>.

As an elementary security feature, the CodeCheck fopen() function will refuse to open a file for writing if its
extension is one of the following: .c, .cp, .cpp, .h, .hpp.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 25

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#10 Checking Microsoft C/C++ Sources
Written by: Patrick Conley
Last Revised: 15 October 2004

This Technical Note discusses how to use CodeCheck on C and C++ source code that was written for any of the Microsoft
compilers. Currently CodeCheck Support MSDEV from VC 1.5 to MSDEV DOT-NET 7.0. Microsoft Visual Studio DOT-
NET requires special CCP files for configuration.

Which version of Microsoft C/C++?

There are four versions of Microsoft C/C++ in use as of this date. CodeCheck needs to know which version you are using.
The macro _MSC_VER has been predefined to the version number (*100) in every version of Microsoft C since 6.00. Here
are the possibilities:

Version OS _MSC_VER Notes
6.00 DOS or OS/2 600 1990, C only
7.00 DOS 700 1991, C and C++
8.00 Windows NT only 800 1993, C and C++
Visual C++ Windows NT & 3.1 800 Same as v8.00
Visual C++ 4.0 Windows NT & 95 1010 MSDEV - v10.10
Visual C++ 5.0 Windows NT & 95 1100 MSDEV – v11.00
Visual C++ 6.0 Windows NT & 95 1200 MSDEV – v12.00
Visual C++ 7.0 Windows 2000 1310 Microsoft Visual C++ .NET – Version 13.10

CodeCheck, when invoked with the –k7 command-line option for Microsoft C++, predefines the _MSC_VER macro as 1200.
If this value is not correct for your application, and if your code depends on this version number, then you may redefine
_MSC_VER on the command-line. Here is an example for version 7.00 of Microsoft C++:

 check -k7 -d_MSC_VER=700 myproject

New MSDEV C++ TYPES - __int8, __int16, __int32, __int64, and bool

From Version 4.2, MicroSoft Visual C++ introduced new integral types __int8, __in16, __int32, __int64 and type bool.
CodeCheck has incorporated them as built-in types. Normally, you do not need to pay any attention to these types. However,
in you code, there is code which derived these types from other types with typedef. You need to rename these types to other
identifiers by command option -D to avoid syntax error. For example, if somewhere in you code, there is declaration like
"typedef unsigned bool;", you need to use command option -Dbool=MYBOOL. The macros defining the value of dcl_base
are in file "check.cch".

Specify the target API with a command-line macro

The Microsoft C++ compiler is used to compile source code for a variety of different target API’s. Depending on the target
API for your source code, you may need to define certain macros on the command line for CodeCheck, so that the Microsoft
headers will be correctly parsed by CodeCheck.

Target API Define these macros
Windows 3.x _WINDOWS

Win32 or Win32s /MT /MD …

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 26

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

DLL _DLL
DLL with MFC _AFXDLL
DLL protected-mode _WINDLL

Mac _MAC // -u_WIN32

For example, to check a Microsoft C++ source file named “foobar.cpp” that is designed to be compiled for the Win32 API,
use:

check foobar.cpp -k7

If you use Microsoft C (but not C++) then read this!

To use CodeCheck on Microsoft C (not C++) source code, you must define _MSC_VER to the appropriate value and
undefine __BORLANDC__. Here is an example for MS-C 6.00:

 check -d_MSC_VER=600 -u__BORLANDC__ myproject

Alternatively, you can insert the following rule into every rule file that you use:

 if (mod_begin)
 {
 define("_MSC_VER", "600");
 undefine("__BORLANDC__");
 }

These steps are necessary when you are checking C source code, but not C++ source code.

CodeCheck can be incorporated into the Visual C++ Environment

The following information is for those still using the old Microsoft Visual C++ (MSVC) 4.2 or earlier environment, if you
using the new Microsoft Visual Developer (MSDEV) then see that chapter #23 of this technical note entitled MSDEV
Studio.

It is extremely easy to incorporate CodeCheck into your Visual C++ environment. Simply use the Options menu to create a
new entry for CodeCheck in the Tools menu. There are fields for the command line, optional arguments, the starting
directory, and the menu text itself. When you create a tool entry in this way, it will appear in the Tools menu. Warnings from
CodeCheck will be automatically captured in the Message window, and the F4 key will display each message together with
the appropriate line in the source file, exactly as if these warnings had been generated by the Microsoft compiler itself.

Abraxas Software has also developed a standalone Windows NT/95 version of CodeCheck called CCWIN or CodeCheck
Windows. If you would like a copy for evaluation send us email and ask for a copy, if your a registered NT/95 user.

Known bugs in Microsoft C++ 6.0 headers [There are NO known problems in MSDEV 7.0 "Dot-Net"]

The header files supplied with Microsoft C++ version 6.0 have a number of bugs that cause CodeCheck to issue syntax
warnings. Here is a list of the bugs we have found to date:

File ______Line Problem
atlbase.h 5135 T * p = &m_pBase[nElement] should have a semicolon on end of line. ;

Atlwin.h 89 after class Cwindow; two forward references should be added -

class CNullTraits;

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 27

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

class CControlWinTraits;

Know Bugs When Running ATL.CPP Sample [MSDEV 6.0 C++]

Atlcom.h 3986 Forward references needed for _ATL_EVENT_ENTRY

4326 Forward references needed for CcomEnum

Atlhost.h 1593 Undeclared Templates, Classes – need fwd reference

Problems in atlcom.h & atlhost.h require the following additions to beginning of the files respectively.

#ifdef CODECHECK // fwd references added to beginning of atlcom.h

template <> struct _ATL_EVENT_ENTRY ;

template <> class CComEnum ;

template <> class CComEnumOnSTL;

class CControlWinTraits ;

#endif

Add the following to the beginning of atlhost.h:

#ifdef CODECHECK // fwd reference added to beginning of atlhost.h

class _ClassFactoryCreatorClass ;

class _CreatorClass ;

class CAxHostWindow ;

class CDLLRegObject ;

#endif

Known Bugs in RPC.H [MSDEV 6.0 C++]

File ______ Line Problem
rpc.h 1 HWND is missing a forward declaration, add "struct HWND {} ;"

The forward declaration for HWND is missing from rpc.h, and must be placed at the beginning of file.

#ifdef CODECHECK // codecheck conditional

struct HWND{}; // required by RPC.H at the beginning of file.

#endif

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 28

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

Microsoft Visual C++ .NET

The Microsoft Visual C++ .NET requires a special CCP file [CodeCheck Project]. Generally for testing and validating
CodeCheck from the MS Visual Studio its best to first start from the command line. MS-Visual .NET requires the batch file
“vsvars32.bat” to be executed to correctly define the SET INCLUDE environmental paths.

The use of the CCP file is

Chknt vc7.ccp yourfile.cpp

The following is the contents of the vc7.ccp file.

Microsoft Visual C++ .NET 7 Configuration File for CodeCheck

-k7

#define

-D_WIN32

-D_DLL_CPPLIB

-D_MSC_VER=1300

#include search path’s [Its best to execute “vsvars32.bat” to config INCLUDE]

-Id:\vc7\include

-Id:\vc7\SDK

To indicate emulation of 64 bit compiler add -D_INTEGRAL_MAX_BITS=64

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 29

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#11 Checking Borland C/C++ Sources
Written by: Patrick Conley
Last Revised: 15 October 2004

This Technical Note discusses how to use CodeCheck on C and C++ source code that was written for any of the Borland
compilers. We support all Borland C & C++ compilers for all time that means Turbo C to the new CodeBuilder C++.
Generally CodeBuilder requires advanced CCP files, just email us and ask us to send you the correct CCP file for your
Borland compiler.

Specify the target API with command-line macros
The Borland C and C++ compilers are used to compile source code for a variety of different target operating systems and
API’s. Depending on the target API for your source code, you will need to define (and possibly undefine) certain macros on
the command line for CodeCheck, so that the Borland headers will be correctly parsed by CodeCheck.

Target API Define these Macros Undefine these macros
Win-16bit (none needed)
Win-32bit __FLAT__, __WIN32__ __LARGE__
DLL-16bit __DLL__
DLL-32bit __DLL__
DOS-16bit (none needed) _Windows
DOS-32bit __FLAT__, __CONSOLE__ _Windows
OS/2-2.1 (none needed)

For example, to check a C++ source file named “foobar.cpp” that is designed to be compiled for the Win32 API, use:

check foobar.cpp -k6 -d__FLAT__ -d__WIN32__ -u__LARGE__

Known bugs in Borland’s C++ 4.0 headers
The header files supplied with Borland C++ version 4.0 have a number of bugs that cause CodeCheck to issue syntax
warnings. Here is a list of the bugs we have found to date:

File Line Problem
iomanip.h 69 IMANIP(typ) should be imanip<typ>
binimp.h 206 template class definition should end with a semicolon
binimp.h 441 IteratorOrder should be
 TBinarySearchTreeBase::IteratorOrder
arrays.h 577 template class definition should end with a semicolon
bags.h 454 template class definition should end with a semicolon
binimp.h 206 template class definition should end with a semicolon
deques.h 1076 template class definition should end with a semicolon
queues.h 521 template class definition should end with a semicolon
stacks.h 753 template class definition should end with a semicolon

Some Borland header files fail to provide several forward declarations for template classes that are used within template
definitions. These forward declarations are necessary for CodeCheck, so that it can properly parse the templates at the time
they are defined. Here are the details:

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 30

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

1. Add these three lines to the beginning of header file listimp.h:

 template <class T, class Alloc> class TMSListImp;
 template <class T, class Alloc> class TMIListIteratorImp;
 template <class T, class Alloc> class TMISListIteratorImp;

2. Add these three lines to the beginning of header file dlistimp.h:

 template <class T, class Alloc> class TMDoubleListElement;
 template <class T, class Alloc> class TMSDoubleListImp;
 template <class T> class TSDoubleListImp;

3. Add this line to the beginning of header file binimp.h:

 template <class T> class TIBinaryTreeInternalIterator;

Processing Borland CodeBuilder C++ 6.0

The Borland CodeBuilder 6.0 requires a CCP file [CodeCheck Project]. The usuage is

Chknt bc6.ccp yourfile.cpp

The following is the contents of the CCP file for CodeBuilder 6.0 always contact
Abraxas Software for the latest CCP files.

-k6

#undefine

-U_M_IX86

-U_WCHAR_T_DEFINED

-U__TURBOC__

-UMSDOS

-U__TCPLUSPLUS__

-U_WCHAR_T

-U_X86_

-U__WIN32__

-U_MSC_VER

-Ui386

-U__BORLANDC__

-U__BCPLUSPLUS__

#define

-D__TLS__=1

-D__FLAT__=1

-D_Windows=1

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 31

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

-D__TEMPLATES__=1

-D__CDECL__=1

-D__CONSOLE__=1

-D_MT=1

-D__CGVER__=512

-D__MT__=1

-D__BCOPT__=1

-D_CPPUNWIND=1

-D_WIN32=1

-DWIN32=1

-D__WIN32=1

-D__WIN32__=1

-D__BOOL__=1

-D__TCPLUSPLUS__=0x0560

-D__BORLANDC__=0x0560

-D__TURBOC__=0x0560

-D__BCPLUSPLUS=0x0560

-D_M_IX86=500

conflict of using 'isdigit' as template & macro

-D__USELOCALES__

#include

-Ic:\BC6\include

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 32

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#12
Written by: Loren Cobb
Last Revised: 17 May 1994

This Technical Note discusses how to use CodeCheck on source code that was written for the Symantec C and C++
compilers running under Windows. For notes on the Macintosh versions of these compilers, please see Tech Note #5.

Specify the target API with command-line macros
The Symantec C and C++ compilers are used to compile source code for a variety of different target operating systems and
API’s. Depending on the target API for your source code, you will need to define (and possibly undefine) certain macros on
the command line for CodeCheck, so that the Symantec headers will be correctly parsed by CodeCheck.

Target API Define these Macros Undefine these macros
Win-16bit (none needed)
Win-32bit __NT__
DLL-16bit (none needed)
DLL-32bit __NT__
DOS-16bit (none needed)
DOS-32bit __NT__
OS/2 __OS2__
Xenix M_XENIX
Unix M_UNIX

For example, to check a C++ source file named “foobar.cpp” that is designed to be compiled for the Win32 API, use:

check foobar.cpp -k5 -d__NT__

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 33

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#13 Checking Watcom C/C++ Sources
Written by: Loren Cobb
Last Revised: 17 May 1994

This Technical Note discusses how to use CodeCheck on source code that was written for the Watcom C and C++ compilers.

Always define __segment and __WATCOMC__
The Watcom header file xxx.h uses the identifier __segment, which CodeCheck normally interprets as a reserved keyword.
To prevent a fatal syntax error, use these options in your command line:

 check -d__segment=__watseg -d__WATCOMC__=800

Specify the target API with command-line macros
The Watcom C and C++ compilers are used to compile source code for a variety of different target operating systems and
API’s. Depending on the target API for your source code, you will need to define (and possibly undefine) certain macros on
the command line for CodeCheck, so that the Watcom headers will be correctly parsed by CodeCheck.

Target API Define these Macros Undefine these macros
Win-16bit __WINDOWS__
Win-32bit __WINDOWS_386__, __FLAT__ __LARGE__
DOS-16bit (none needed)
DOS-32bit __FLAT__ __LARGE__
OS/2 (none needed)
QNX __QNX__

For example, to check a Watcom C++ source file named “foobar.cpp” that is designed to be compiled for 32-bit Windows,
use:

check foobar.cpp -k4 -d__FLAT__ -d_WINDOWS_386__ -u__LARGE__

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 34

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#14 The Rogue Wave C++ Libraries
Written by: Loren Cobb
Last Revised: 22 June 1998

This Technical Note discusses how to use CodeCheck on source code that was uses the Rogue Wave class libraries.

Specify your compiler!
The Rogue Wave header files contain a large amount of conditional code that depends upon macros that are predefined by
your compiler. CodeCheck will parse this conditional code correctly if you make sure that CodeCheck also has the same
macros predefined. The following table shows the macros that you need to define (or undefine) depending on the target
compiler:

Compiler Define these macros With this value
AT&T cfront 2.x __ATT2__ 1
AT&T cfront 3.0 __ATT3__ 1
Glockenspiel __GLOCK__ 1
Gnu __GNUC__ 1
IBM C-Set __IBMCPP__ 1 //(IBM Visual Age C++)
Metaware __HIGHC__ 1
Watcom __WATCOMC__ 950

For example, if you are using a Rogue Wave library in source code written for Watcom C++ version 9.5, then use the
following command-line:

 check foobar.cpp -k4 -d__WATCOMC__=950

Compilers not listed in the above table probably do not need any macros defined. In particular, CodeCheck attempts to define
the proper macros for Rogue Wave for four compilers: Apple MPW C++, Borland C++, Microsoft C++, and Symantec C++.
However, if you encounter mysterious syntax errors then it is possible that Rogue Wave needs to have a macro defined or
undefined. To find out, run CodeCheck again with the –H and –M options, and look at the listing file (check.lst) that is
generated by CodeCheck. Study the part of the listing that shows the header file compiler.h. This is where most (but not
all) of the compiler-specific conditional code is located. Look for conditional code that refers to your compiler, and see
whether CodeCheck has used the correct conditions. If not, then you will be able to define or undefine the appropriate
macros on the command line.

Rogue Wave and Borland C++

In the case of Borland C++, the Rogue Wave conditional code is very sensitive to the compiler version number, stated in
hexadecimal. For example, in version 4.10 of Borland C++ the macro __TURBOC__ has the value 0x410. In you encounter
difficulties then first make sure that CodeCheck is using the right version number (use the –D? option to see a list of macro
definitions).

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 35

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

Rogue Wave and Metaware Ansi C

In the case of Metaware, when using there C++ compiler, but checking standard C, use the -k11 option, but undefine the
default MSDOS macro (-UMSDOS). For a list of all intrinsic #define's for Metaware use -k11 with the -D? option [check -
k11 -d? <cr>].

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 36

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#15 Type Checking with CodeCheck
Written by: Loren Cobb / Patrick Conley
Last Revised: 22 June 1998

This Technical Note discusses how to use CodeCheck to perform type-checking on C/C++ code.

Type-checking with CodeCheck C/C++
Beginning with version 5.04, CodeCheck performs type-checking on C source code. Type checking for C++ source code was
be enabled in version 7.51. In addition, we have added 25 new variables and 12 new functions to CodeCheck that will allow
users to write custom rules that detect a very large variety of type-related events.

There are four broad categories of type-related rules that CodeCheck can now enforce. Rules can now be written to detect:
(a) a cast to or from any specified type, (b) implicit type conversions to or from any specified type, (c) use of functions or
variables of any specified type, and (d) use of an operand of any specified type for any specified operator. In addition,
CodeCheck now automatically checks function argument and return() types for compatibility with the prototype for the
function, if one is in scope.

The new variables that have been added to CodeCheck fall into two new categories. Variables with the new prefix cnv_
describe characteristics of implicit type conversions. These are the compiler-generated conversions that happen automatically
when a variable of one type is assigned to a variable of another type, without an explicit type cast (for example, when a
pointer is assigned to an integer). Variables with the new prefix idn_ describe characteristics of identifiers (variable and
function names), when they are used in executable code.

Three Quick Examples
1. Suppose that we want to find all occurrences of an explicit cast of a pointer to a struct XYZ to anything. The
variable op_cast will act as the trigger for the rule. The cast operator has two operands: the first is type that is to be cast, the
second operand is the result type. We need to detect a cast in which the first operand is a pointer to a struct XYZ. This
type has two levels: the first is “pointer to…”, and the second is the base type, namely “struct”.

The CodeCheck rule will look like this:

if (op_cast)
 {
 if ((op_levels(1) == 2) &&
 (op_level(1,0) == POINTER) &&
 (op_base(1) == STRUCT_TYPE) &&
 (strcmp(op_base_name(1),"XYZ") == 0))
 warn(1234, "Cast from pointer to struct XYZ");
 }

The functions op_levels(), op_level(), op_base(), and op_base_name() are extremely similar to their counterparts among the
dcl_ functions, except that they can be applied to each operand of any operator. Their first argument is always the operand
index (1 for the first operand, etc.).

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 37

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

2. Suppose that we want to find all occurrences of an implicit conversion of anything to a pointer to a struct XYZ.
Like the cast operator, there are two operands for an implicit type conversion. The first operand is the type to be converted,
the second is the result type. The CodeCheck rule looks like this:

if (cnv_any_to_ptr || cnv_ptr_to_ptr)
 {
 if ((op_levels(2) == 2) &&
 (op_level(2,0) == POINTER) &&
 (op_base(2) == STRUCT_TYPE) &&
 (strcmp(op_base_name(2),"XYZ") == 0))
 warn(1234, "Conversion to pointer to struct XYZ");
 }

3. Suppose that we want to detect every use of any global variable in executable code. (By “global” we mean a
variable with file scope and external linkage.) When these variables are found, we want to print the line number and file
name where the global variable was declared. The rule will look like this:

if (idn_variable)
 if (idn_global)
 {
 printf("Variable %16s (file %s, line %d)\n", idn_name(),
 idn_filename(), idn_line);
 }

The trigger for this rule should not be written like this: if (idn_variable && idn_global), because logical
conjunctions in a trigger result in multiple evaluations of a rule. In this example the rule would be triggered twice: once when
all rules referencing idn_variable are evaluated, and again when all rules referencing idn_global are evaluated. To
avoid multiple evaluations, do not use logical conjunctions in trigger expressions.

4. Suppose we want to make sure that the string copy function strcpy is never called with a second argument that is
longer than the first. Here is a rule that will perform the test:

if (op_call)
 if (strcmp(op_function(), "strcpy") == 0)
 if ((op_level(1,0) == ARRAY) && (op_level(2,0) == ARRAY))
 {
 src_dim = op_array_dim(1, 0);
 dest_dim = op_array_dim(2, 0);
 if ((src_dim > dest_dim) && (dest_dim > 0))
 warn(1234, "strcpy destination string is too short!");
 }

The test for (dest_dim > 0) is necessary because dest_dim will have been set to –1 if the array size was unspecified
in the declaration of the destination string.

New Variables for Type Checking
cnv_any_to_bitfield Set to 1 when an expression requires an implicit conversion from any type to a

bitfield.

cnv_any_to_ptr Set to 1 when an expression requires an implicit conversion from any non-pointer
type to a pointer type.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 38

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

cnv_bitfield_to_any Set to 1 when an expression requires an implicit conversion from a bitfield to any
type.

cnv_const_to_any Set to 1 when an expression requires an implicit conversion from a constant type to
any non-constant type.

cnv_float_to_int Set to 1 when an expression requires an implicit conversion from a floating-point
type to an integer type.

cnv_int_to_float Set to 1 when an expression requires an implicit conversion from an integer type to a
floating-point type.

cnv_ptr_to_any Set to 1 when an expression requires an implicit conversion from a pointer type to
any non-pointer type.

cnv_ptr_to_ptr Set to 1 when an expression requires an implicit conversion from a pointer type to a
different pointer type.

cnv_signed_to_any Set to 1 when an expression requires an implicit conversion from a signed type to
any unsigned type.

cnv_truncate Set to 1 when an expression requires an implicit conversion from a larger arithmetic
type to a smaller arithmetic type.

idn_base Set to the base type of an identifier, using the same values as dcl_base, e.g.
VOID_TYPE or CHAR_TYPE.

idn_bitfield Set to 1 if this identifier is a named bitfield.

idn_constant Set to 1 when an identifier is an enum constant.

idn_function Set to 1 when an identifier is a function name.

idn_global Set to 1 when an identifier has file scope and external linkage.

idn_levels Set to the number of levels of an identifier, using the same values as dcl_levels.

idn_line Set to the line number of the declaration in scope for the identifier. For the filename
of the file in which the declaration is found, use the function idn_filename().

idn_local Set to 1 when an identifier has local scope (i.e. it was declared within a function
body).

idn_member Set to 1 when a C++ identifier has class scope (i.e. it was declared as a member of a
class, struct, or union).

idn_no_init Set to 1 when a local variable is used before it has been initialized.

idn_not_declared Set to 1 when an identifier is a function name with no declaration in scope.

idn_no_prototype Set to 1 when an identifier is a function name with no prototype in scope.

idn_parameter Set to 1 when an identifier is a function parameter.

idn_storage_flags Set to an integer which identifies the storage class of the identifier, using the same
values as dcl_storage_flags.

idn_variable Set to 1 when an identifier is a variable.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 39

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

op_call Set to 1 when a function call is about to be executed.

op_operands Set to the number of operands expected whenever an executable operator is
encountered. When the operator is a function call, this variable is set to the number
of actual arguments in the argument list. When the operator is a cast, this variable is
set to 2 (the first operand is the result type, the second is the type of the operand to
be type-cast).

op_subscript Set to 1 when an array subscript is about to be evaluated. This occurs after the
subscript index has been evaluated.

Changed Variables
op_open_funargs This is now merely a punctuation operator that is set to 1 when the open parenthesis

of a function call or declaration is found. Use op_call if you want to trigger on the
event in which the function is actually called (which occurs after all function
arguments have been evaluated).

Obsolete Variables
op_open_subscript Use op_subscript if you want to trigger on the event in which the subscript is

evaluated, or op_open_bracket if you want to trigger on any open bracket. You can
use op_declarator and op_executable to help find brackets used specifically in decla-
rations or executable code.

op_close_subscript Use op_subscript if you want to trigger on the event in which the subscript is
evaluated, or op_close_bracket if you want to trigger on any close bracket. You can
use op_declarator and op_executable to help find brackets used specifically in decla-
rations or executable code.

exp_no_prototype Use idn_no_prototype instead.

exp_not_declared Use idn_not_declared instead.

stm_no_init Use idn_no_init instead.

New Functions for Type Checking
int dcl_array_dim(int k)

If the kth level of the type of this declarator is an array, then this function returns the dimension of the array (or -1 if no
dimension was given).

int idn_array_dim(int k)

If the kth level of the type of this identifier is an array, then this function returns the dimension of the array (or -1 if no
dimension was given).

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 40

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

char * idn_base_name(void)

If the base type of the jth operand of an operator is a tag (enum, union, struct, class) or typedef name, then this function
returns the tag or typedef name as a character string.

char * idn_filename(void)

Returns the name of the file that contains the declaration in scope for the identifier. For the line number of the declaration,
use the variable idn_line.

int idn_level(int k)

Returns the kind of the kth level of the type of an identifier, using the same values as the function dcl_level(), i.e.
POINTER, ARRAY, FUNCTION, or REFERENCE. The number of levels in the type is given by the variable idn_levels.

int idn_level_flags(int k)

Returns the flags for the kth level of an identifier, using the same values as dcl_level_flags(), e.g. CONST_FLAG or
FAR_FLAG.

char * idn_name(void)

Returns the name of an identifier as a character string.

int op_array_dim(int j, int k)

If the kth level of the type of the jth operand of an operator is an array, then this function returns the dimension of the array (or
-1 if no dimension was given).

char * op_base_name(int j)

If the base type of the jth operand of an operator is a tag (enum, union, struct, class) or typedef name, then this function
returns the tag or typedef name as a character string.

int op_bitfield(int j)

Returns 1 if the base type of the jth operand of an operator is a named bitfield, otherwise zero.

int op_level(int j, int k)

Returns the kind of the kth level of the jth operand of an operator, using the same values as the funciton dcl_level(), i.e.
POINTER, ARRAY, FUNCTION, or REFERENCE.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 41

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

int op_level_flags(int j, int k)

Returns the flags for the kth level of the jth operand of an operator, using the same values as dcl_level_flags(), e.g.
CONST_FLAG or FAR_FLAG.

int op_levels(int j)

Returns the number of levels of the jth operand of an operator, using the same values as the variable dcl_levels.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 42

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#16 CodeCheck under IBM MVS-OE
Written by: Patrick Conley
Last Revised: 13 December 2004

This Technical Note discusses the installation and execution of CodeCheck on mainframe computers that are running the
Open Edition version of the IBM/MVS operating system.

Effective Winter-2004 IBM MVS C/C++ is now activated with CodeCheck –K12 switch.

Shrouded sources
CodeCheck MVS is supplied as “shrouded” C source files. Shrouding is a process that renders the source code intelligible
only to C compilers. Shrouding removes all formatting and comments, encodes all identifier names, and converts high-level
grammatical constructs (e.g. while and for) into low-level code (if and goto statements). We distribute CodeCheck in
shrouded sources in order to maximize portability while still maintaining security for our intellectual property.

CodeCheck requires an ANSI compiler
The source files for CodeCheck require an ANSI-compliant compiler and preprocessor. The C89 compiler from IBM is
known to compile CodeCheck successfully, but any ANSI compiler will do as well. The makefile provided with the
CodeCheck sources assumes the C89 compiler.

How CodeCheck searches for header files
Important: CodeCheck cannot read headers (or any other files) that are located in “native” MVS datasets. If your C/C++
compiler header files have not already been copied into the heirarchical file system, then it will be necessary to move them
there before running CodeCheck. Move them to the directory /usr/include, and be sure to give them their normal
names (e.g. stdio.h instead of stdio). Be sure also to create the directory /usr/include/sys, and move the these
headers to this subdirectory: stat.h, modes.h, and types.h. If your compiler also supplies these headers:
locking.h, timeb.h, and utime.h, then move them to sys also.

CodeCheck MVS looks for header files in the same way as any Unix compiler. The default directory for headers is
/usr/include. If any command-line options –I have been used, then directories given in these options are searched
before the default directory. If desired, the –I command-line options can be placed in project files, one per line.

CodeCheck also looks at the INCLUDE environmental variable for header directories. You may set this variable to identify
the header directory paths. For example, if some of your C headers are located in /u/C89/include, then the following C-
Shell command will set the INCLUDE variable to the correct path:

 INCLUDE="/u/C89/include"
 export INCLUDE

If your headers are located in more than one directory, list all directory paths in this variable, separated by colons.

CodeCheck searches directories for system header files in this order:

1. Directories specified by calling the CodeCheck function set_str_option('I', …).
2. Directories specified with -I in the command-line or in project files.
3. Directories specified in the INCLUDE environmental variable.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 43

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

4. The default header directory, /usr/include.
5. The current directory.

How CodeCheck searches for rule files
CodeCheck searches for rule files in the default directory /usr/CodeCheck/rules, and then in the current directory.
Note the two upper-case C’s in the name of this default directory.

CodeCheck also looks at the CCRULES environmental variable for rule directories. You may set this variable to identify the
rule directory paths. For example, if some of your CodeCheck rule files are located in /usr/foobar, then the following C-
Shell command will set the CCRULES variable to the correct path:

 CCRULES="/usr/foobar"
 export CCRULES

Directories listed in CCRULES are searched before the default rule directory. If your rule files are located in more than one
directory, list all directory paths in this variable, separated by colons.

Predefined macros
CodeCheck always predefines certain macros before it reads a single line of source code. Which macros are predefined, and
with which values, depend on which operating system is in use and which –k option is in effect. To determine exactly which
macros are predefined, and their values, use the –D? command-line option. For example, check -k4 "-D?" will cause
CodeCheck to print the list of macros that are predefined when generic C++ source files are checked.

The following macros are predefined for the C89 compiler:

Unix __COMPILER_VER__ _Packed

__unix __TARGET_LIB__ __EDC_LE

 If necessary, any predefined macro may be undefined with the –U command-line option, or given a different value with the
–D option. The special option –D? will cause CodeCheck to print a list of all predefined macros.

Extremely Important: most compilers have some predefined macros. Be sure to define yours on the command-line when
invoking CodeCheck. Failure to do so will result in highly mysterious syntax errors whenever a header or source file
contains one of these macro names.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 44

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#17 IBM VisualAge C/C++ Compiler
Written by : Patrick Conley

Last Revised: December 26, 2004, for version 11.13B1

This Technical Note discusses how to use CodeCheck on source code that was written for IBM VisualAge C++ compiler.
CodeCheck supports IBM Visual Age C++ for the OS/2 and Microsoft Windows platforms.

The IBM VA-C++ compiler is very popular on IBM-AIX operating systems.

Checking IBM Visual Age C++
From V6.05, option -k8 is changed from "Whitesmith C" to "IBM VisualAge C++".

CodeCheck, when invoked with command option -k8 for VisualAge C++, predefines macro __IBMCPP__ to 350 which is
the version number of VisualAge C++ compiler.And it also predefines macro __cplusplus. Macro _M_I386 is predefined.
__va_list is defined for both cases when macros _M_I386 and __THW_PPC__ are defined in header files stdio.h and
stdarg.h. If your sources intend to use __va_list defined in condition of __THW_PPC__, you can use command-line options -
u_M_I386 and -d__THW_PPC__.

Specify the target API with a command-line macro
Target API Define these macros

Windows 3.x __WINDOWS__

Win32 _WIN32 // Default for Dos and NT/95 Version

Checking IBM Visual Age C++ on IBM-AIX

Normally CodeCheck issues worst case messaging for dcl_hidden. If you wish to force CodeCheck to use the latest ISO-C++
scoping rules and assume that your code will never be ported to non-standard C++ compilers then you can tell CodeCheck to
ignore events that would normally trigger dcl_hidden.

If (prj_begin) {

 Set_scope_inner(1); // force code-check to hide conditional decl’s within the inner scope block

}

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 45

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

Below is a typical VACPP6.CCP CodeCheck Configuration for for IBM-VA C++ Version 6.0, running on IBM AIX.

use -k8 to support GNU C++ and/or IBM VA

-k8

-d__OS400__

-d__except=_except_

-d__IBMCPP__=600

-D_POSIX_SOURCE

-D_XOPEN_SOURCE=500

-d__TOS_AIX__

-d_POWER

-d_power_rs

-dAIX

-d_AIX

-d_AIX43

header Path's required. [AIX search path, critical MUST be this order]

-i/usr/include

-i/usr/include/sys

-i/.

-i/usr/vacpp/include

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 46

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#18 New Command Options & Functions

Written by: Patrick Conley

Last Revised: January 2003 Version 10.01

This Technical Note describes all new CodeCheck options and functions that have been added since CodeCheck Reference
Manual went to press in January 15, 1998. For the most recent list of new trigger and/or functions please see the file
‘master.txt’ found on our ftp site at ftp://ftp.abxsoft.com/codchk/master.txt.

New CodeCheck Options
-K8 changed from "Whitesmith C" to "IBM VisualAge C++"

From V6.06, option -k9 is designated for Metrowerks CodeWarrior C++.

New functions
int all_digits(char *);

int all_lower(char *);

int all_upper(char *);

int atoi(char *);

float atof(char *);

void eprintf(char * format, …); // Same as printf() except print to stderr instead of stdout.

Void pp_error_ severity(int); // Change defined PP behavior of #ERROR directive

void remove_path();

void skip_macro_ops(int); // op_ variables to be set by operators derived from macro expansion

char *strcat(char*, char*);

char *strncat(char*, char*, int);

char *strcpy(char*, char*);

char *strncpy(char*, char*, int);

int strncmp(char*, char*, int);

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 47

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

char *strchr(char*, int);

char *strrchr(char*, int);

int strcspn(char*, char*);

int strspn(char*, char*);

All these function have same specification as ANSI C standard library functions with same names.

void skip_nonansi_ident(char);

Since option -K8 for Whitesmith C is dropped for IBM VisualAge C++. To make CodeCheck still be able to check
Whitesmith C code, this function is needed to make tell CodeCheck to skip non-standard identifiers(leaded by charaters '@',
'#' and'`'). The parameter to this function is the leading character.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 48

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#19 ObjectSpace/HP Standard Template
Libraries

Written by : Shuming Tan

Last Revised: December 15, 1997

Using Object Space STL with CodeCheck

When you are installing STL<ToolKit>, you will select the host C++ compiler. So when you are using ObjectSpace STL
Class Libraries, you should use the header files of the host C++ compiler. What you need to do is make sure that the
directories containing the header files are reachable for CodeCheck by specifying either environmental variable CCRULES
or command option -I. And please use corresponding command option -K for the host C++ compiler.

When you are checking code written for cross platform development, you should specify correct symbols with option -D.

 Symbol Platform
 OS_WIN_3_1 Windows 3.1, Windows for Workgroup 3.11

 OS_WIN_NT_3_1 Windows NT 3.1

 OS_WIN_NT_3_5 Windows NT 3.5

 OS_WIN_NT_4_0 Windows NT 4.0

 OS_DOS_6 MS_DOS 6.x

 OS_WIN_95 Windows 95

 OS_SOLARIS_2_4 Solaris 2.4

 OS_SOLARIS_2_5 Solaris 2.5

 OS_OSF1_4 Dec Alpha running OSF1 4.x

 OS_WIN_32 All Microsoft Windows 32 Platforms

 OS_OS2_3 IBM OS/2 3.x

 OS_SUN_4_1 Sun OS 4.1

 OS_HPUX_9 HP UNIX 9.x

 OS_HPUX_10 HP UNIX 10.x

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 49

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

 OS_IRIX_5 Irix 5.0

 OS_AIX_4 IBM AIX 4.x

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 50

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

Debugging OBJECTSPACE/HP STL and CodeCheck
Correct operation of CodeCheck in conjunction with ObjectSpace STL requires at least CodeCheck 6.05.

If you encounter mysterious syntax errors then it is possible that STL needs to have a macro defined or undefined. To find
out. run CodeCheck with the options -H and -M options, and look at the listing file(check.lst) which is generated by
CodeCheck with option -L. If you have difficulty in findng out the cause. Please email the listing file to Abraxas technical
support with the problem addressed. See section #6 Trouble Shooting for complete information on debugging these types of
problems. Lastly, please share your problems with Abraxas Software via email at support@abxsoft.com.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 51

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#20 NameSpace - ANSI C++ Working Draft

Written by: Shuming Tan

Last Revised: January 6, 1997

This Technical Note discusses how to use CodeCheck with C++ source code that references ‘namespace’ as defined by the
1996 ANSI C++ Working Draft.

From V6.06, CodeCheck is able to parse syntax of namespace which is described in " Working Paper for Draft Proposed
International Standard for Information Systems -- Programming Language C++" (Doc No:X3J16/95-0087 WG21/N0687).
The description about namespace also can be found in "Microsoft Visual C++ Language Reference" (published by
Microsoft Press).

Namespace now is available in C++ compilers such as Microsoft Visual C++, Symantec C++, etc.

Basically, a namespace is an optionally named declaration region. The entities declared within a namespace can be referred
by the name of the namespace. A namespace can be either named or unnamed. Also a namespace can be split into multiple
parts at different locations. Like class, namespace can be declared in a nested way. However, namespace can not be declared
in function and class definition. For example,

 namespace A {

 int i;

 typedef char Foo;

 }

 namespace { // unnamed namespace

 void f() { }

 }

 namespace A { // namespace splitted into multi-parts

 namespace B { // nested namespace

 class C{ };

 }

 }

A declared namespace can be used in two ways.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 52

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

1. As qualifier to a name declared within the namespace, the qualified name can be class name, type name, variable name,
function name, template name or namespace name which is nested within the qualifying namespace. Like A::i++

2. Used by being declared in using directive. For Example,

 namespace A { int i; }

 using namespace A;

 void f() { i++; } // A::i++

An unnamed namespace behaves as if it were replaced by

 namespace unique { namespace-body }

 using namespace unique;

where, for each translation unit, all occurrences of unique in that translation unit are replaced by an identifier that differs
from all other identifiers in entire program. For example,

 namespace { int i } // unique::i

 void f() { i++; } // unique::i++

 namespace A {

 namesspace {

 int i; // A::unique::i

 int j; // A::unique::j

 }

 void g() { i++; } // A::unique::i++;

 }

Members of namespace can be defined either within or outside the namespace.

Currently, CodeCheck is able to accept sources with namespaces defined and used. But there is not any triggers or function
specific to namespace. In the future, a new group of variables and functions carrying prefix nsp_ will be added. Your
recommendations are welcome.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 53

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#21 Checking Metrowerks CodeWarrior
C/C++ Sources

Written by: Shuming Tan

Last Revised: January 6, 1997

This Technical Note discusses how to use CodeCheck on source code that was written for the Metrowerks CodeWarrior C++
compilers.

__

Checking Metrowerks CodeWarrior C++

From V6.06, option -k9 is designated for Metrowerks CodeWarrior C++.

CodeCheck, when invoked with command option -k9 for Metrowerks CodeWarrior C++, predefines macro __MWERKS__
and __cplusplus.

On Windows 95/NT, as noticed, the names of some files and directories can consist of words separated by blank spaces.
When specifying this type of file or directory names in command line, please put the entire path in a pair of double quotes as
a whole.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 54

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#22 Checking SUN C/C++ Code on SUN
Sparc

Written by: Patrick Conley

Last Revised: 18 June 1997

This Technical Note describes caveats related to running CodeCheck on the Sun Sparc and/or Solaris Operating System.

__

Parsing C/C++ on the SUN SPARC
It is recommended to define macro __sparc or sparc with command line option -D. If the macros are not specified in
command line, CodeCheck may encounter a fatal error with message "ISA not supported". This is because the included
header file /usr/include/sys/isa_defs.h requires a macro specifying the target machine. If the macro is undefined, the
conditional compilation will go to line "#error ISA not supported" which causes the fatal error.

Solaris machine dependent caveats

Please define one of macros __i386, i386, __ppc, __sparc, or sparc for the machine type with command line option -D.
Using CodeCheck with Solaris C/C++ requires that one of these macros be defined. It is possible to use any platform and
check your source for the appropriate target by defining the correct macros.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 55

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#23 Running CodeCheck within Microsoft
Visual C++ Developer Studio

Written by: Patrick Conley

Last Revised: 15 January 2003

This chapter covers integrating CodeCheck with Microsoft Visual C++ Developer Studio. For complete integration of
CodeCheck and MSDEV as a GUI please see our GoCheck Software.

How to integrate CodeCheck with Microsoft Developer Studio

Microsoft Visual C++ Developer Studio provides a way to incorporate CodeCheck into its environment.

Following are the steps how to add CodeCheck into Developer Studio.

Step 1. Pull down Tools menu and choose command Customize, a customize dialog box with pops up.

Step 2. In dialog box, choose tab Tools, you will see the dialog for adding a tool.

Step 3. To add CodeCheck,

a). Click on New, in the new field within Menu contents, type in the text which you wish to appear in pull down menu.

b). In field Command, type in the path name of CodeCheck executable. You also can use browse button besides the input
field to set the path name.

c). In field Arguments, type in the necessary command options for run a successful checking, such as -K7, -D_WIN32 etc. It
is recommended that you put the option used most of time.

Step 4. You can toggle two more choices,

a). Use output window, if this choice is on, all the output from CodeCheck will go to output window of studio. Otherwise, all
the output will go to a DOS window popped up for the output. It is recommended to set this choice on. With the messages in
output window, by double clicking on the CodeCheck message line with file name and line number, the window containing
the file will be displayed and the line of the line number in the warning message will be pointed. You also can you use key
F4 to navigate through the CodeCheck messages.

b). Prompt for arguments, if this choice is on, a dialog box will be popped up to remind you if you want modify command
arguments. If quite often you run CodeCheck you need to specify something different in command options. It is
recommended to put the fixed part in Command arguments field. Add the changing parts in this dialog box.

Step 5. Click on button Close, CodeCheck has been added into Tools menu.

To run CodeCheck, simply just pull down Tools menu and choose the command for CodeCheck.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 56

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

Searching for Header Files within MSDEV STUDIO

Though Developer Studio provides the way to set the directories for searching included header files, the directories set in this
way have no effect on CodeCheck's searching header files. CodeCheck still looks for header files base on three sources,
current working directory, the directories specified by environmental variable INCLUDE and directories specified in
command options -I(both in command line or rule function call set_str_option('I',...)). If any rule file is used without full
path name specified, environmental variable CCRULES also need to be set.

Checking Projects and individual files with MSDEV STUDIO

To check single source file, you can either specify the detailed file name in command argument or specify the file name as
$(FileName)$(FileExt) to make CodeCheck to check the file in top window.

To check a project, you can either specify the CodeCheck project file name in command arguments or specify the
CodeCheck project file as $(FileName)$(FileExt) which represents a project file open as text file shown in top window.

Having source files in different directories:

Instead of using $(FileName)$(FileExt) use $(FilePath). This will open a project whose .dsw file resides in one directory,
and still be able to check a file which is part of that project but resides in a different directory.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 57

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#24 Improving CodeCheck Speed
Written by: Shuming Tan

Last Revised: 15 December 2002

This chapter covers integrating CodeCheck with Microsoft Visual C++ Developer Studio. Also relevant is Pre-Compiled
headers. There are many ways to make CodeCheck very fast when parsing MicroSoft C++ please contact us for the latest
techniques.

Codecheck on a relatively large Microsoft C++ project

When running Codecheck on a relatively large project, it is noticed that Codecheck will spend significant amount of time on
parsing included header files. Since the inclusions of headed files occurs at source file level, some header files will need to
be included for most of the source files in the project, either directly or indirectly. To speed up the process, we can form a
pseudo module pmain.c that includes all the source files as header files. For examples, suppose we have a project will has 3
source files f1.c, f2.c and f3.c. And each file includes header file f4.h. If we check f1.c, f2.c and f3.c as individual source
files of a project, we will see that header file f4.h will be fully included 3 times, one for each source file. It is possible that
file f4.h could be included more than once in within a source file, either directly or indirectly. Command option –G can help
to reduce the inclusion of file f4.h in a source file to once. However, it is still necessary to have an full inclusion for the
source file. In most of the cases, the header file is included to provide the same information. Therefore, they can be fully
included just once. Noticed that if the header file has a proper wrapper, the inclusion other than first one in a source file can
be takes the amount of time that can be ignored. The source files f1.c, f2.c and f3.c are included as header files in pseudo
module pmain.c

/* pmain.c */

#include “f1.c”

#include “f2.c”

#include “f3.c”

Header file f4.h will be included 3 times indirectly in pseudo module pmain.c. However, if the header file has a proper
wrapper, except the first inclusion, the ensuing inclusion will be just scanning of lines of the header file wrapper. The large
portion of the header file will be skipped. In this case, header file is actually fully included once.

Noticed that it is assumed that a header file is included in same way in all source files. Otherwise there will be the same
problem raised by using command option -G. See P. 3 of CodeCheck Reference for the explanation.

If the source files to be included are scattered in different locations, you can use relative paths and command options -I to
make them be included properly just like other header files.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 58

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

Because these source files are included as header files, triggers mod_begin and mod_end are not applicable to them. To get
the name of the source file, function file_name() instead of mod_name() should be used. When pp_include_depth has value
1, it is referring source files instead of header files. If this method is used for faster processing and the issues mentioned
above are involved in the rule files to be used, it is needed to modify the rule files so that they can adapt to this scenario.

As we know, command option -S has no effect on source file level lines. However, when this method is used, the source files
are included as header files and will be treated the same as header files regarding the command option -S. To make rules be
able to be applied on these source files, it is necessary to specify command option -S with value 1 or 3 explicitly. Also
function set_header_optS() can help decide to which header files the rules will be applied on and in which way the rules will
be applied.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 59

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#25 Extending CodeCheck Functionality
Written by: Shuming Tan

Last Revised: 10 March 1998

This Tech-Note covers extending CodeCheck’s built-in custom programming features.

Extending CodeCheck

CodeCheck is not the last stop in your whole process. Combined with other programs, it can provide you more powerful
results. In some cases, it could be difficult to accomplish the goal only by CodeCheck. For example presented in this section,
to calculate the data complexity of a project (a set of related C source files).

Assume that there are M functions defined project-wide, for each function,

FAN-IN(N) = the number of functions by which this function N is called.

FAN-OUT(N) = the number of function called by function N.

IO-VARS(N) = the number of global variables used by function N + the number of
returning value.

COMPLEXITY(N) = FAN-OUT(N) / (1 + IO-VAR(N))

The overall complexity of the project is calculated with following formula.

COMPLEXITY = (COMPLEXITY(1) + … + COMPLEXITY(M)) / M

The functions counted in this model are only those user defined functions, this means that the functions called but undefined
will be seen as library functions.

There are some difficulties to have the job done with a single rule file.

We need to maintain a symbol table to keep and retrieve certain information when a function is defined or called. Currently,
the data types provided by CodeCheck are limited. With these types, it is quite difficulty to construct and manipulate a
symbol table which is mostly based on types array, struct and pointer.

CodeCheck works in the way of forward chaining and it does not retain any previous information. To keep the information
available for late processing, it is user’s duty to

As we noticed that data types provided by CodeCheck for implementing rules is limited, especially for symbol table
manipulations. C/C++ provides more powerful and sophisticated data types. Therefore we use a 2-step strategy as the
solution.

1. Use CodeCheck rules to extract necessary information from the modules. To make the information available for late
processing, the information should be stored into external file(s). CodeCheck provides some I/O functions and string
operating functions which are the same as or similar to the corresponding ANSI library functions.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 60

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

Extending Function Meaning

fopen() Open a file with specified name and mode

fclose() Close a file.

fprintf() Output to a file.

sprintf() Output to a string.

strcat(), strncat() Concatenate two strings into one.

strcpy(), strncpy() Copy a string into another.

With these functions, we can store the extracted information into external files in relatively simple and straight forms.

2. Use the files generated in step 1 as input to a user developed program which is written specifically for processing the
information we extracted from source files in previous step. With this program, we will get the results desired.

The complete solution to this problem can be downloaded from the Abraxas Web site at www.abxsoft.com. ZIP location
www.abxsoft.com/dl/ccrules.zip, or can be requested by email support@abxsoft.com.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 61

http://www.abxsoft.com/
http://www.abxsoft.com/dl/ccrules.zip
mailto:support@abxsoft.com

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#26 GNU-GCC C/C++ Configuration
Written by: Patrick Conley

Last Revised: 13December2004

This Tech-Note covers CodeCheck's ability to analyze GNU-GCC for ALL operating systems C/C++ configurations. For a
completely discussion on this issue of compiling GCC on any operating system with codecheck see the article “Using Linux
Standard Base with CodeCheck”.

Effective 13December2004 GCC mode is now activated by the –K13 switch.

GNU-GCC Overview

All the following is done from the standard command-line-console interface. This is to ensure independence from the wide variety of
GUI's that have nothing to do with GCC compilation. Once the configuration is done, and CodeCheck is compiling your gnu-gcc C/C++
on your development workstation then it’s a simple matter to invoke CodeCheck from your favorite GUI. The issue of running CodeCheck
from Gui's is found in separate Technical Notes. The standard UNIX paradigm for invoking products such as CodeCheck within standard
UNIX Programmer Development Environment's [PDE's] is simply installing it as a "LINT" type external subsystem. This way you can
select text from the GUI and have CodeCheck process the code, and click on the results which takes you to the correct line in the file.

Here are the two standard references we use, its very important to configure your gcc comiler at the beginning. We assume in this example
that the goal is to emulate only the default gcc compiler. Should another compiler need to be emulated by codecheck, then the 'gcc' shown
should be substituted with the proper invocation. [Note: All examples below must be done from the Shell and/or Console/Cmd-Line.]

[See several paragraphs down for exact definition of hello.c & hello.cpp]

gcc -c -v hello.c > hello.c.txt // pipe output to hello.c.txt

[your system may require "2>" rather than ">" to capture the stderr output.]

gcc -c -v hello.cpp > hello.cpp.txt // pipe output to hello.cpp.txt

From the above we can build you a custom gcc_c.ccp & gcc_cpp.ccp for your system. For testing and obtaining configuration data we use
a standard set of C & C++ files. No modification must be done to these files. They must applied exactly as shown. Basically the -v tells
gcc to dump the explicit path's and #defines [macros] used to process the test code. Since this information is machine specific we have
found this to be the most accurate way to obtain configuration information from gcc for your development workstation.

//HELLO.C GCC C Case // MUST BE JUST LIKE THIS

#include <stdio.h>

main() { printf("hello"); }

//HELLO.CPP GCC C++ Case // MUST BE JUST LIKE THIS

#include <iostream.h>

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 62

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

main() { cout<<"hello"; }

Operating System Independent GCC Configuration

Today, users are processing GCC with CodeCheck on IBM-AIX, SUN-Sparc/Solaris, MS-Windows, and of course Linux in all flavors.
There are others, but I have just listed the most common. CodeCheck supports ALL GNU-GCC for ALL operating systems. Below we
discuss the GCC on MS-Windows case, the other cases are similiar. All information to construct the CCP files shown that shown below,
came directly from the "cc -c - v hello.c" information found above.

The normal mode of operation for CodeCheck is just "check filename.c" for C, and "check -k4 filename.cpp" for standard AT&T C++.
However for supporting the compilers on the market we have found that Codecheck Configuration Project files, hereafter called CCP files
are the best approach. When using CodeCheck all arguments that are not switches are treated as source files, other than the CCP file. You
can have as many CCP files on a CodeCheck invocation as you wish. Note a CCP file uses the pound sign [#] as a comment similar to a
standard makefile. One of the most important things about CCP files is that order of include path's must be given exactly as found in the
test dump, .e.g. "cc -c -v example.c". The macro values shown in the verbose compilation dump from gcc must be enumerated exactly as
shown in the dump.

GCC C On Windows 2003

Given the "hello.c" case above compilation with codecheck on windows console command line would be …

check gnu_c.ccp hello.c

The contents of gnu_c.ccp are ...
#gnu_c.ccp // start of file

#force CodeCheck into GCC compiler mode –k13
-k13
-D__inline__=__inline

gcc C macros for 686 cygnus
-D__GNUC__=3
-D__GNUC_MINOR__=2
-D__GNUC_PATCHLEVEL__=0
-D__GXX_ABI_VERSION=102
-D_X86_=1
-D__NO_INLINE__
-D__STDC_HOSTED__=1
-Di386 -D__i386
-D__i386__
-D__tune_i686__
-D__tune_pentiumpro__
-D__tune_pentium2__
-D__tune_pentium3__
-D__i386__
-D__i386
-D__CYGWIN32__
-D__CYGWIN__
-Dunix
-D__unix__
-D__unix

#include search paths for C cygnus 686
-I/usr/include/w32api/
-I/usr/lib/gcc-lib/i686-pc-cygwin/3.2/include/
-I/usr/include/

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 63

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#GNU_C.CCP // end of file

GCC C++ On Windows 2003

C++ is is very similiar to C above, basically the major change is the path's for the header files. GCC being a modern compiler operates in
C++ mode by default. The macros in the above C case are largely de-activating C++.

Command line console Usage is ...

check gcc_cpp.ccp hello.cpp

#GCC_CPP.CCP // START OF FILE
config codecheck for GCC/GNU extensions
-k13
cygnus 686 gcc c++ macros
-D__GNUC__=3
-D__GNUC_MINOR__=2
-D__GNUC_PATCHLEVEL__=0
-D__GXX_ABI_VERSION=102
-D_X86_=1
-D_X86_=1
-D__NO_INLINE__
-D__STDC_HOSTED__=1
-Di386
-D__i386
-D__i386__
-D__tune_i686__
-D__tune_pentiumpro__
-D__tune_pentium2__
-D__tune_pentium3__
-D__i386__
-D__i386
-D__CYGWIN32__
-D__CYGWIN__
-Dunix
-D__unix__
-D__unix
cygnus c++ header file path's
-I/usr/include/w32api
-I/usr/include/c++/3.2
-I/usr/include/c++/3.2/i686-pc-cygwin
-I/usr/include/c++/3.2/backward
-I/usr/lib/gcc-lib/i686-pc-cygwin/3.2/include
-I/usr/include

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 64

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#27 New CodeCheck Variables, Functions,
Operators and Error Messages
Written by: Patrick Conley
Last Revised: 26 December 2004, for version 11.13

This Technical Note describes all new CodeCheck variables, functions, operators, and messages that have been added since
The CodeCheck Reference Manual went to press in September 2004. Most of these new triggers/functions were added to
support GNU/GCC compilers, and support advanced C++ style guidelines.

New Variables
dcl_exception C++ exception declaration complete.

dcl_local_dup Signal if a symbol is used more than once at current local scope. The Gnu-
Compiler allows this declaration, but warns "shadowed variable”.

dcl_throw_parameter A C++ throw argument. Created to support java-style exception checking.

idn_exception Actual usage of C++ exception in code.

idn_exception_base C++ exception base type at trigger point idn_exception.

lex_long_long Signal "long long" 64 bit type.

lex_uc_long Signal 'L' long type constant.

lin_within_namespace True if current declaration is within namespace definition.

mod unused_static Fires at the end-of-module when each unused static is found. The
mod_unused returns the total count. The idn_name(), idn_filename(), and
idn_fileline() may be used to determine where the un-used static was
declared.

op_call_overload This C++ method call is overloaded. Function return type is context
dependent. Function exp_base_name() may be used to determine actual
return type.

op_macro_arg A macro function call argument.

op_macro_begin The begin point of a macro function call. End point is signaled by
op_macro_call.

pp_else Fires on the #else macro used within #ifdef … #endif pairs. Used to verify
that ALL #ifdef blocks contain a valid #else case which is common in coding
standards.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 65

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

New Functions
advise(int) Enable/Disable CodeCheck Internal Warning Messages from Output. void

advise (int on_off).

exp_base_name() Return base-name of current expression. Useful for obtaining resultant base-
name of an overloaded function and/or pointer linked overloaded functions.

find_root(char*) Find root base type of name symbol. Useful for advanced symbol table
lookup algorithms. Find_root(char * symbol-name).

find_scoped_root(char*,char*) Find root of symbol using an explicit scope name. find_scoped_root(char
*scope-name, char * symbol-name).

idn_exception_name() Name of exception currently being used at trigger point idn_exception.

idn_fileline() The current line number of the current ‘found’ identifier. Used by find_root()
to determine exactly where the ‘found’ identifier is located.

idn_filepath() The name of the ‘found’ file. Used as idn_fileline() above.

namespace_name() The name of the current namespace [lin_within_namespace]

next_token() Next token in source stream from current position. Value may be NULL at
end of line. To be used with prev_token(), token(), and next_token().
Typically at any event token() returns character string name of current token.

pp_if_search(int) Enable GNU-GCC #if (types) pre-processor method. Open-System embedded
compiler support. GNU-GCC allows #if test on actual types in addition to simple
macro testing. Default for this feature is off.

set_scope_inner(int) Force inner scoping rule to emulate standard c++ compiler. B y default codecheck
place’s for-loop declarations in the outer-block so dcl_hidden can find the maximum
conflicts, as many c++ compilers don’t actually follow the specification. If you know
your code will only be ported to a perfect C++ compiler then set_scope_inner(1)
activated by if (prj_begin) will force local for-loop and if-else declarations into the
following scope level. By default set_scope_inner(0) is set so that dcl_hidden will
fire alerting to problems that exist in c++ implementations.

warn_format(int) Format output string for standard UNIX/Microsoft format or Emacs format. The
default is standard message format “filename(line-number): message text”. Emacs
includes column position. Only warn(N,”format”,arg1,…) messages are effected.
This option is to be used as warn_format(WARN_FORMAT_EMACS) when
CodeCheck is executed from within the Emac’s editor. The macro constant
argument of WARN_FORMAT_EMACS is defined in check.cch.

New Operators
 (none)

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 66

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 67

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#29 Processing IBM 390-z/OS EBCDIC
Written by: Patrick Conley

Last Revised: 09 November 2004

This Tech-Note covers CodeCheck's ability to analyze IBM 390 C/C++ from ALL operating systems.

IBM OS/390 & z/OS-C/C++ Overview

IBM OS/390 C/C++ user source code may be pure EBCDIC or it may be a form know as IBM-273, and quite
often the system /usr/include headers may be IBM-1047. Many user’s of codecheck may not have access to an
IBM Mainframe directly to use CodeCheck therefore we have added the ability to process native EBCDIC C/C++
on an IBM mainframe from Windows 2000 and/or Linux or any other NON-IBM-MAINFRAME environment.
This discussion also applies to the IBM Mainframe version of CodeCheck which can be built on a native IBM
pure EBCDIC machine, e.g. CodeCheck can process ALL IBM-EBCDIC from both IBM and non-IBM platforms.

This section will briefly describe the IBM C/C++ storage format’s and discuss exactly how to process IBM
C/C++ with CodeCheck from Windows-2000. For an example of any other operating system please contact
Abraxas Software [support@abxsoft.com].

Processing IBM C and/or C++ from a MS-Windows machine would appear using our free codecheck demo as …

demont -E273 4.c -rmisra_ibm.cco -l -m -h –p

Note, the main difference between normal usage is the addition of the –E273 switch which tells codecheck to
process all source as IBM-273 by default. The –Ribm.cco tells codecheck how to process IBM specific keywords
from an asc ii machine, and the following switches generate diagnostics. The –RIBM.CCO would not be required
on a IBM-MAINFRAME version of CodCheck as the IBM C keywords are built-in.

IBM OS/390 C EBCDIC Storage Example

The following code example 4.c is in IBM-273 [EBCDIC] format we’re using our e273.exe routine to convert
the sample to ASCII for display, rather than using ‘cat’. This example ‘4.c’ uses two headers <stdio.h> and
<decimal.h>. If you would like any of the tools seen here just ask by contacting us by email.

e273 4.c

#include <stdio.h> /* for printf() */

#include <decimal.h> /* for datatype decimal */

#pragma margins(1, 80) /* ignore all columns other than 1 to 80 */

int main(void) {

 decimal(3,0) d;

 decimal(9,2) e;

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 68

mailto:support@abxsoft.com

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

 int i;

 d = 99D;

 e = 1111.11D;

 return 0;

}

In the following example the system header file decimal.h is not IBM-273, but IBM-1047. The pragma tells
CodeCheck to go into IBM-1047 mode. When CodeCheck returns to caller it returns to the default [-E273],
unless it had a different type of encoding. This allows CodeCheck to process any IBM C/C++ from any ASCII
machine. Lastly, note here we’re using “e1047.exe” because the decimal.h is in IBM-1047 format, the –4 means
just print the first four lines of the header file.

e1047 -4 decimal.h

 ??=ifndef __decimal

 ??=ifdef __COMPILER_VER__

 ??=pragma filetag ("IBM-1047")

 ??=endif

Complete compiling appears in the following text, note we have added the –P switch for progress to get a ‘cc -v’
style verbose report. You can see that CodeCheck successfully compiled the entire example and all system
headers. The #pragma message “IBM EBCDIC” is added to indicate that CodeCheck is using ibm.cch to
configure the IBM C keywords that are non-standard to ANSI-C. Note that we’re not using any –Kn switch so
CodeCheck is operating in extended ANSI-C mode.

demont -E273 4.c -ribm.cco -l -m -h -p

Abraxas Software (R) CodeCheck NT version 11.01 B9 DEMO

Copyright (c) 1988-2004, by Abraxas Software, Inc. All rights reserved.

Rule files are in these directories:

 d:\rules\

Reading from file "ibm.cco"

Reading from file "ibm.cco"

Checking extended ANSI C file 4.c with rules from ibm.cc:

Reading header file "ibm.cch"

 IBM EBCDIC

Returning to file "4.c"

Reading header file <stdio.h>

Reading header file <sys/types.h>

Returning to file <stdio.h>

Returning to file "4.c"

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 69

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

Reading header file <decimal.h>

Returning to file "4.c"

main

File 4.c check complete.

IBM OS/390 C EBCDIC Summary

In the above example the IBM C code was copied directly from the IBM Mainframe and ran on Windows 2000.
Normally of course the IBM system-headers would remain intact on the IBM mainframe and would be mapped to
a windows 2000 drive. Such as the following example.

demont -E273 4.C -Rmisra_ibm.cco -L -M -H –P –IF:

Where “-IF:” [dash eye F colon] means to use the F: [mapped drive] for system header searching, assuming that
/usr/include on the remote IBM Mainframe has been mapped to local driver “F”. Certainly if the user source and
header’s were also ‘mapped’ then the analysis could be done from a non-IBM system with code at all being on the
native test machine.

Using –EN where ‘N’ reflects the default IBM-N EBCDIC format means that ALL source must be EBCDIC. The
assumption in this discussion is that the goal is to inspect IBM C/C++ from a non-IBM mainframe machine and
study the code intact without modification.

The –EN switch can be used on an IBM Mainframe in pure ebcdic environment for supporting the mixed ebcdic
case where the format of the user source is different than the headers.

If a user wishes to use ASCII C/C++ as user code then all the code must be ASCII as the –EN switch forces
codecheck into a pure EBCDIC mode for all file input from command invocation until termination. For this
reason rule-files must be compiled separately if you wish to compile them in ASCII, otherwise of course on an
ASCII machine the output of the rule-files would contain EBCDIC text when ran on a ASCII machine. This is
why in the above examples we’re always using a .CCO file and not compiling the rule-file as a .CC file. The rule-
files are pre-compiled as ASCII so the output appears correctly on the ASCII machine. Of course if you wished to
generate EBCDIC output on a ASCII machine directly without using filters then you could add the rule-file
compilation switch to the EBCDIC invocation and generate pure ebcdic data.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 70

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

#30 New CodeCheck Triggers and
Functions Version 12.50
Written by: Patrick Conley

Last Revised: 09 November 2005

This Tech-Note covers CodeCheck's new additions for 2005.

New CodeCheck 12.5 Functions:

file_timestamp() Timestamp in char* format [Ansi ctime()] of current file_name().

find_keyword(char*) Determine whether a given string is a keyword in C/C++. Useful for
implementing rules that say you cannot use a upper case version of a
keyword. Thus by lowering the case of a string you can check if it’s a
keyword.

find_similar(char *) See if the string provided has a match to other declarations in the code
database. The default is the first 8 characters, the length can be modified with
set_ambig_len(). Useful for rules that say that the first N characters of all
variables must be different. Returns N, where is the number of a match found
of leading characters. While dcl_similiar will fire if first set_ambig_len() is
the same, this function returns the actual number of leading similar characters
for any given string.

getenv(char *) Standard ANSI function. An example use would be to determine CPU_TYPE
so that rule-files can selectively analyze source automatically on test
hardware.

idn_get_cookie(char *) Get cookie value associated with idn_variable or idn_function ‘found’
identifier. Useful for deep analysis. For instance a cookie can keep the state
of all variables assigned with malloc() to determine whether free() was
called.

idn_set_cookie(char *, int) Set cookie allows a state to be associated with a declaration. See
idn_get_cookie() for explanation of use.

set_ambig_len(int) Set the ambiguity length for similiarity of declarations. See dcl_similiar.
Default is 8. Also effects the depth of analysis of the find_similiar()
keyword. Making this a large number could bog-down a machine cpu cycles.

set_expir (int, int, int) Set expiration date of a source file for checking. This function tell’s
CodeCheck to disable rule-file checking for all source files that are older
than the date given. The default is ALL files are checked. Order of arguments
is day, month, year. The day of month as DD [1->NN]. The month of year as
MM [0->NN], and the year as YYYY.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 71

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

set_inner_scope(int) Set inner scope tells codecheck to move the declaration of a for-loop
into the inner scope of the loop. The default is the outside of the loop.
For example “for(int i=0; i<0; i++) {…}” in this case when the
argument is non-zero the declaration loop-counter “i” [eye] would be
moved into the inner set of braces. This is a ANSI-C++ issue. Some
compiler’s default to this and some do not. The use of this function is to gain
perfect emulation of a particular compiler. See CodeCheck trigger’s
dcl_hidden and dcl_local_dup.

New CodeCheck 12.5 Triggers:

op_safe_cast Fires when the C++ <static_cast> type case is seen. See op_cast for detecting
old-style “(int)Rval” style casting. If cast is done with <…> then
op_safe_cast fires, if case is done old-style then op_cast fires.

idn_init_locptr Fires when a local variable is initialized to an address in memory. This
indicates that a pointer was initialized correctly. Some coding standards
require that all pointers be initialized to a legal address.

idn_init_new Fires when a variable is initialized with C++ keyword new.

idn_no_delete Fires when a variable created with C++ keyword new did not contain a
matching delete at function/method end.

idn_specifier_flags Similar to dcl_specifiers_flags, used to obtain specifier flags at use rather
than declaration. For example if a variable is being set to a negative value,
but was not declared as signed, then you could detect the violation.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 72

CodeCheck Technical Notes http://www.abraxas-software.com Printed 01/30/06

 Trouble Report Form
Fax to: Abraxas Technical Support
Fax number: 503-232-0543
Email: support@abxsoft.com
From:
Company:

CodeCheck Version: _________ Abraxas Part Number:

Operating System: __________ Platform:

C or C++ compiler:

Your phone number:

Your fax number:

Your Inter-Net address :

Please describe your problem. If it is a syntax warning or fatal error, please try the suggestions found in Tech Note #6 on Troubleshooting
before faxing in a Trouble Report Form! It frequently helps to show us the relevant portion of a listing file, so that we can see the error
message in its exact context. Make this listing file by running CodeCheck with the –H, –M, and –D? options. Do not use –J. The listing
file created by CodeCheck will have the name check.lst.

Generally if you have a compile problem here is what will be asked.

1.) Never use the –R until you have verified that you can compile your source just like ‘cc –c foo.c’, e.g. “check foo.c’.

2.) If you have a problem with step #1 we ask that you send the generated check.lst [-L –M –H], and the dot-eye file. “cc –E foo.c
> foo.c.i”.

Never send proprietary code. Generally if there is a problem, its in the system headers, .e.g. “#include<iostream>,… If you cut & paste just
the #include < system - include >’s from the top of your C/C++ source generally you can create a small c or c++ test case that doesn’t
include your proprietary code.

Most often problems are that #defines are missing, for instance MS-DEV C++ requires many explicit macros to emulate the /MT, /MD
modes of operation. { .e.g. /MD requires –D_MD on the CodeCheck cmd-line. See MSDEV help-topic “/MD” for macro equivalent. }

All GCC compilers are different, gcc/g++ always requires CCP files for configuration. Years ago ALL system headers files on UNIX
Clones were simply kept in /usr/include. This is the case no longer, today on any given GCC compiler installation dozen’s of include
search path’s are required to emulate most g++ compilers. For G++ the simplest thing is to request our MKCCP tool that generates CCP
file(s) automatically for gcc. This is advanced tool, your first CCP should always be written by us, so that you can have a working example
as a basis. See the document Linux Standard Base with CodeCheck for a full description of the GCC processing issues.

CodeCheck Technotes © 1988-2006 by Abraxas Software, Inc. Page 73

	#1 CodeCheck MS-DOS / WIN-3.x
	#2 CodeCheck Unix
	Special HPUX, AIX, SUN, SGI, and SOLARIS Caveats

	#3 CodeCheck OS/2
	#4 CodeCheck VMS
	#5 CodeCheck Mac
	#6 CodeCheck Windows 2000 [NT]
	#7 Troubleshooting Syntax “Errors”
	Why syntax errors occur
	The first and most important step
	Nonstandard keywords
	Creating new intrinsic type specifiers with new_type
	SYSTEM ERRORS
	Contacting Abraxas Software for Support

	#8 Errata in the CodeCheck Reference Manuals
	#9 New Variables, Functions, Operators and Error Messages
	#10 Checking Microsoft C/C++ Sources
	Which version of Microsoft C/C++?
	New MSDEV C++ TYPES - __int8, __int16, __int32, __int64, and
	Specify the target API with a command-line macro
	If you use Microsoft C (but not C++) then read this!
	CodeCheck can be incorporated into the Visual C++ Environmen
	Known bugs in Microsoft C++ 6.0 headers [There are NO known
	Know Bugs When Running ATL.CPP Sample [MSDEV 6.0 C++]
	Known Bugs in RPC.H [MSDEV 6.0 C++]
	Microsoft Visual C++ .NET

	#11 Checking Borland C/C++ Sources
	#12 Checking Symantec C/C++ Sources
	#13 Checking Watcom C/C++ Sources
	#14 The Rogue Wave C++ Libraries
	Rogue Wave and Borland C++
	Rogue Wave and Metaware Ansi C

	#15 Type Checking with CodeCheck
	#16 CodeCheck under IBM MVS-OE
	#17 IBM VisualAge C/C++ Compiler
	Target API Define these macros

	#18 New Command Options & Functions
	#19 ObjectSpace/HP Standard Template Libraries
	#20 NameSpace - ANSI C++ Working Draft
	#21 Checking Metrowerks CodeWarrior C/C++ Sources
	#22 Checking SUN C/C++ Code on SUN Sparc
	Solaris machine dependent caveats

	#23 Running CodeCheck within Microsoft Visual C++ Developer
	How to integrate CodeCheck with Microsoft Developer Studio
	Searching for Header Files within MSDEV STUDIO
	Checking Projects and individual files with MSDEV STUDIO
	Having source files in different directories:

	#24 Improving CodeCheck Speed
	Codecheck on a relatively large Microsoft C++ project

	#25 Extending CodeCheck Functionality
	Extending CodeCheck
	Extending Function Meaning

	#26 GNU-GCC C/C++ Configuration
	GNU-GCC Overview
	GCC C On Windows 2003
	GCC C++ On Windows 2003

	#27 New CodeCheck Variables, Functions, Operators and Error
	#29 Processing IBM 390-z/OS EBCDIC
	IBM OS/390 & z/OS-C/C++ Overview
	IBM OS/390 C EBCDIC Storage Example
	IBM OS/390 C EBCDIC Summary

	#30 New CodeCheck Triggers and Functions Version 12.50
	New CodeCheck 12.5 Functions:
	New CodeCheck 12.5 Triggers:

	Trouble Report Form

